IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013150.html
   My bibliography  Save this article

Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA

Author

Listed:
  • Nagababu, Garlapati
  • Srinivas, Bhasuru Abhinaya
  • Kachhwaha, Surendra Singh
  • Puppala, Harish
  • Kumar, Surisetty V.V.Arun

Abstract

Harnessing offshore wind energy helps to achieve carbon neutrality. However, the availability of wind resources is sensitive to climate change and also depends on the available foundation technologies of wind turbines. Investigating annual energy production (AEP) and CO2 equivalent emission avoidance using offshore wind farms helps to make appropriate energy strategies. This study uses an ensemble developed using CORDEX-South Asia regional climate models by assigning weights derived from the CRITIC multi-criteria technique to estimate AEP under two representative concentration pathways (RCP), i.e., RCP4.5 and RCP8.5 scenarios in the North Indian Ocean. To account for the impact of climate change, inter and intra-annual variations in the wind power density (WPD), capacity factor (CF), and AEP are estimated. Estimates based on the feasibility of foundation technology show that the cumulative AEP obtained from the 240 MW wind farm in historic, near- and far-future scenarios are 357.91 TWh, 808.6 TWh, and 4888.78 TWh, respectively. In the near future, harnessing offshore wind energy can reduce CO2 emissions by 4500 million tons annually. The findings of this study suggest that harnessing offshore wind energy by installing farms within the study area could help in the massive reduction of CO2 emissions leading to carbon neutrality.

Suggested Citation

  • Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013150
    DOI: 10.1016/j.renene.2023.119400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    2. Shengjin Wang & Hongru Yang & Quoc Bao Pham & Dao Nguyen Khoi & Pham Thi Thao Nhi, 2020. "An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    3. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    4. Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
    5. Gao, Yang & Ma, Shaoxiu & Wang, Tao, 2019. "The impact of climate change on wind power abundance and variability in China," Energy, Elsevier, vol. 189(C).
    6. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    7. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    8. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    9. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    10. Kim, Ji-Young & Oh, Ki-Yong & Kang, Keum-Seok & Lee, Jun-Shin, 2013. "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation," Renewable Energy, Elsevier, vol. 54(C), pages 189-195.
    11. de Jong, Pieter & Barreto, Tarssio B. & Tanajura, Clemente A.S. & Kouloukoui, Daniel & Oliveira-Esquerre, Karla P. & Kiperstok, Asher & Torres, Ednildo Andrade, 2019. "Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model," Renewable Energy, Elsevier, vol. 141(C), pages 390-401.
    12. Omrani, Hiba & Drobinski, Philippe & Arsouze, Thomas & Bastin, Sophie & Lebeaupin-Brossier, Cindy & Mailler, Sylvain, 2017. "Spatial and temporal variability of wind energy resource and production over the North Western Mediterranean Sea: Sensitivity to air-sea interactions," Renewable Energy, Elsevier, vol. 101(C), pages 680-689.
    13. Arun Kumar, Surisetty V.V. & Nagababu, Garlapati & Kumar, Raj, 2019. "Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys," Energy, Elsevier, vol. 185(C), pages 599-611.
    14. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    15. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.
    16. Johnson, Dana L. & Erhardt, Robert J., 2016. "Projected impacts of climate change on wind energy density in the United States," Renewable Energy, Elsevier, vol. 85(C), pages 66-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    3. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    5. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    6. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    7. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    9. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    10. Zhuo, Chen & Junhong, Guo & Wei, Li & Fei, Zhang & Chan, Xiao & Zhangrong, Pan, 2022. "Changes in wind energy potential over China using a regional climate model ensemble," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    13. Luzia, Graziela & Koivisto, Matti J. & Hahmann, Andrea N., 2023. "Validating EURO-CORDEX climate simulations for modelling European wind power generation," Renewable Energy, Elsevier, vol. 217(C).
    14. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    15. André Claro & João A. Santos & David Carvalho, 2023. "Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    16. Zhuo Chen & Wei Li & Junhong Guo & Zhe Bao & Zhangrong Pan & Baodeng Hou, 2020. "Projection of Wind Energy Potential over Northern China Using a Regional Climate Model," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    17. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    18. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    19. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    20. Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.