IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp189-195.html

Site selection of offshore wind farms around the Korean Peninsula through economic evaluation

Author

Listed:
  • Kim, Ji-Young
  • Oh, Ki-Yong
  • Kang, Keum-Seok
  • Lee, Jun-Shin

Abstract

We have conducted a feasibility study on the development of offshore wind farms around the Korean Peninsula as part of the national plan. This study deals with the selection of the optimal site for an offshore wind farm. We set rating indices in order to select an optimal site of the candidate coasts, which include the expected B/C (benefit to cost) ratio, the possible installation capacity of the wind farm, the convenience of grid connection, and so on, for each candidate site. The expected B/C ratio is described as the benefit from the annual energy production compared to the costs that correspond to the construction of the turbine foundation, and the grid connection between the offshore wind farm and the substation on land. It can be found from the evaluation that the construction costs associated with the substructure and grid connection are crucial in determining the location of the first offshore wind farm in Korea. Consequently, we could select a top site among the candidate sites to be implemented as the first national project of offshore wind farm development.

Suggested Citation

  • Kim, Ji-Young & Oh, Ki-Yong & Kang, Keum-Seok & Lee, Jun-Shin, 2013. "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation," Renewable Energy, Elsevier, vol. 54(C), pages 189-195.
  • Handle: RePEc:eee:renene:v:54:y:2013:i:c:p:189-195
    DOI: 10.1016/j.renene.2012.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200496X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
    2. Dhanju, Amardeep & Whitaker, Phillip & Kempton, Willett, 2008. "Assessing offshore wind resources: An accessible methodology," Renewable Energy, Elsevier, vol. 33(1), pages 55-64.
    3. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    4. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jun-Shin & Ryu, Ki-Wahn, 2012. "Wind resource assessment around Korean Peninsula for feasibility study on 100 MW class offshore wind farm," Renewable Energy, Elsevier, vol. 42(C), pages 217-226.
    5. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    6. Manwell, J.F. & Rogers, A.L. & McGowan, J.G. & Bailey, B.H., 2002. "An offshore wind resource assessment study for New England," Renewable Energy, Elsevier, vol. 27(2), pages 175-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    2. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    3. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    4. Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
    5. Yanez-Rosales, Pablo & Río-Gamero, B. Del & Schallenberg-Rodríguez, Julieta, 2024. "Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands," Energy, Elsevier, vol. 307(C).
    6. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jun-Shin & Ryu, Ki-Wahn, 2012. "Wind resource assessment around Korean Peninsula for feasibility study on 100 MW class offshore wind farm," Renewable Energy, Elsevier, vol. 42(C), pages 217-226.
    7. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Naidu, Natansh K. & Savsani, Vimal, 2017. "Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations," Energy, Elsevier, vol. 118(C), pages 622-631.
    9. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    10. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    11. Woochul Nam & Ki-Yong Oh, 2020. "Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    12. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    14. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    15. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    16. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    17. Kim, Ji-Young & Oh, Ki-Yong & Kim, Min-Suek & Kim, Kwang-Yul, 2019. "Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar," Renewable Energy, Elsevier, vol. 144(C), pages 41-55.
    18. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    19. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    20. Sovacool, Benjamin K. & Hirsh, Richard F., 2008. "Island wind-hydrogen energy: A significant potential US resource," Renewable Energy, Elsevier, vol. 33(8), pages 1928-1935.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:189-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.