IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v177y2016icp449-463.html
   My bibliography  Save this article

Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea

Author

Listed:
  • Schweizer, Joerg
  • Antonini, Alessandro
  • Govoni, Laura
  • Gottardi, Guido
  • Archetti, Renata
  • Supino, Enrico
  • Berretta, Claudia
  • Casadei, Carlo
  • Ozzi, Claudia

Abstract

The use of offshore wind power is becoming increasingly important towards a sustainable growth worldwide. In Italy, as well as in other countries where wind energy is provided only by onshore plants, the interest in the deployment of offshore wind resources is rapidly growing, despite relatively modest average wind speeds, compared to typical wind conditions in the North Sea. Research efforts have, so far, addressed the exploration of the most promising locations, based on wind characteristics; however, more extended evidence of technical and economic feasibility is now needed to raise awareness in the decision makers and secure to this source of renewable energy a proper role in the future energy policies. Within such a context, the paper presents the first feasibility study for the development of an offshore wind farm off the coast of Rimini, in the Northern Adriatic Sea. The study is based on an anemometric campaign started at the site in 2008 to provide a statistical assessment of the wind characteristics and the related wind energy potential, and on a 10-year wave measurement record next to the area, together with a thorough analysis of the site geological and environmental characteristics. Environmental data are interpreted with a proper consideration of the extreme events distribution and relevant results are used to select the most appropriate commercially available wind turbine and to design the site-specific support structure. A comprehensive evaluation of the investment costs and revenues is then carried out with reference to two wind farm layouts (a first smaller, constituted of 15 elements, and another one, featuring up to 60 elements) and in relation to two different scenarios, conservative and comparatively more realistic. Results of the study clearly show that the Northern Adriatic Sea is potentially suitable for the development of a large wind farm and should encourage investments on more advanced experimental campaigns and related studies in order to prove the feasibility of innovative technological solutions that would substantially increase the profitability of such installation.

Suggested Citation

  • Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
  • Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:449-463
    DOI: 10.1016/j.apenergy.2016.05.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630719X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balog, Irena & Ruti, Paolo M. & Tobin, Isabelle & Armenio, Vincenzo & Vautard, Robert, 2016. "A numerical approach for planning offshore wind farms from regional to local scales over the Mediterranean," Renewable Energy, Elsevier, vol. 85(C), pages 395-405.
    2. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
    3. Ladenburg, Jacob, 2009. "Visual impact assessment of offshore wind farms and prior experience," Applied Energy, Elsevier, vol. 86(3), pages 380-387, March.
    4. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    5. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    6. AfDB AfDB, . "Malawi - Country Profile," Country Brochure, African Development Bank, number 110.
    7. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    9. Gene Russo, 2014. "Renewable energy: Wind power tests the waters," Nature, Nature, vol. 513(7519), pages 478-480, September.
    10. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    11. Natarajan, Anand, 2014. "Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 68(C), pages 829-841.
    12. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    13. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    14. Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
    15. Ederer, Nikolaus, 2016. "The price of rapid offshore wind expansion in the UK: Implications of a profitability assessment," Renewable Energy, Elsevier, vol. 92(C), pages 357-365.
    16. repec:aei:rpbook:24122 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Laface, Valentina & Arena, Felice, 2023. "Extremes and resource assessment of wind and waves in central Mediterranean Sea," Energy, Elsevier, vol. 278(PA).
    3. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    4. Xu, Wenxuan & Liu, Yongxue & Wu, Wei & Dong, Yanzhu & Lu, Wanyun & Liu, Yongchao & Zhao, Bingxue & Li, Huiting & Yang, Renfei, 2020. "Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Adetokun, B.B., 2017. "Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions," Applied Energy, Elsevier, vol. 190(C), pages 339-353.
    7. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Rafael Morales & Lorenzo Fernández & Eva Segura & José A. Somolinos, 2016. "Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC," Energies, MDPI, vol. 9(9), pages 1-16, September.
    9. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    10. Quero García, Pablo & Chica Ruiz, Juan Adolfo & García Sanabria, Javier, 2020. "Blue energy and marine spatial planning in Southern Europe," Energy Policy, Elsevier, vol. 140(C).
    11. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    12. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    13. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    2. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    4. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    5. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    6. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    7. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    8. David Rudolph & Claire Haggett & Mhairi Aitken, 2018. "Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit," Environment and Planning C, , vol. 36(1), pages 92-117, February.
    9. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    10. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    11. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    12. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    13. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    14. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Tao Luo & De Tian & Ruoyu Wang & Caicai Liao, 2018. "Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine," Energies, MDPI, vol. 11(12), pages 1-24, November.
    16. Ladenburg, Jacob, 2010. "Attitudes towards offshore wind farms--The role of beach visits on attitude and demographic and attitude relations," Energy Policy, Elsevier, vol. 38(3), pages 1297-1304, March.
    17. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
    18. Jones, Christopher R. & Richard Eiser, J., 2010. "Understanding 'local' opposition to wind development in the UK: How big is a backyard?," Energy Policy, Elsevier, vol. 38(6), pages 3106-3117, June.
    19. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    20. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:449-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.