IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004581.html
   My bibliography  Save this article

Strategic decision-making in offshore oil and gas platform-to-wind turbine conversion: An integrated analysis of structural integrity into retrofit lifecycle costs and climate change impacts

Author

Listed:
  • Bagheri Nia, Mohammadsaeid
  • Edalat, Pedram

Abstract

The conversion of offshore oil and gas platforms into offshore wind turbines presents a viable and complex solution for extending the lifecycle of existing infrastructures at their decommissioning stage while contributing to renewable energy production. However, the retrofit process involved in conversion projects poses significant challenges for decision-makers in resource allocation and strategic planning. These challenges mainly lie in balancing the structural feasibility and economic viability of retrofit processes with their environmental sustainability. This study proposes an analytical decision-making framework that integrates structural integrity assessment into the retrofit life cycle cost and its associated climate change impact analyses. Utilizing a fuzzy analytic hierarchy process methodology, the study evaluates the impact of structural integrity criteria of the integrated existing infrastructure-offshore wind turbine on key retrofit cost components and its climate change implications. This framework provides insights into how variations in structural integrity directly influence the distribution of life cycle cost main contributors in retrofit process and its climate change impact across various life cycle stages. A sensitivity analysis was conducted to examine retrofit cost distributions and environmental effects across different structural safety threshold scenarios, providing strategic insights into sustainable resource allocation and strategic planning optimization in offshore platform conversion projects.

Suggested Citation

  • Bagheri Nia, Mohammadsaeid & Edalat, Pedram, 2025. "Strategic decision-making in offshore oil and gas platform-to-wind turbine conversion: An integrated analysis of structural integrity into retrofit lifecycle costs and climate change impacts," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004581
    DOI: 10.1016/j.apenergy.2025.125728
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    2. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    3. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    4. Jime Braga & Thauan Santos & Milad Shadman & Corbiniano Silva & Luiz Filipe Assis Tavares & Segen Estefen, 2022. "Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    5. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
    6. Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
    7. Leporini, Mariella & Marchetti, Barbara & Corvaro, Francesco & Polonara, Fabio, 2019. "Reconversion of offshore oil and gas platforms into renewable energy sites production: Assessment of different scenarios," Renewable Energy, Elsevier, vol. 135(C), pages 1121-1132.
    8. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    9. Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
    10. Parente, Virginia & Ferreira, Doneivan & Moutinho dos Santos, Edmilson & Luczynski, Estanislau, 2006. "Offshore decommissioning issues: Deductibility and transferability," Energy Policy, Elsevier, vol. 34(15), pages 1992-2001, October.
    11. Glaum, Philipp & Neumann, Fabian & Brown, Tom, 2024. "Offshore power and hydrogen networks for Europe’s North Sea," Applied Energy, Elsevier, vol. 369(C).
    12. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    2. Sun, Zhen & You, Xianhui, 2024. "Life cycle carbon footprint accounting of an offshore wind farm in Southeast China—Simplified models and carbon benchmarks for typhoons," Applied Energy, Elsevier, vol. 355(C).
    3. Vincenzo Basile & Francesca Loia & Nunzia Capobianco & Roberto Vona, 2023. "An ecosystems perspective on the reconversion of offshore platforms: Towards a multi‐level governance," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1615-1631, July.
    4. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    5. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    6. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    7. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    8. Noor Amila Wan Abdullah Zawawi & Kamaluddeen Usman Danyaro & M. S. Liew & Lim Eu Shawn, 2023. "Environmental Sustainability and Efficiency of Offshore Platform Decommissioning: A Review," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    9. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    10. Barbara Marchetti & Francesco Corvaro & Marta Rossi, 2025. "Energy Implications and Environmental Analysis of Oil Rigs Decommissioning Options Using LCA Methodology," Energies, MDPI, vol. 18(13), pages 1-13, June.
    11. Qiqing Wang & Cunbin Li, 2021. "An evolutionary analysis of new energy and industry policy tools in China based on large-scale policy topic modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    12. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    13. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    14. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    15. Abdo, Hafez & Mangena, Musa & Needham, Graham & Hunt, David, 2018. "Disclosure of provisions for decommissioning costs in annual reports of oil and gas companies: A content analysis and stakeholder views," Accounting forum, Elsevier, vol. 42(4), pages 341-358.
    16. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    17. Burcin Atilgan Turkmen & Fatos Germirli Babuna, 2024. "Life Cycle Environmental Impacts of Wind Turbines: A Path to Sustainability with Challenges," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
    18. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    19. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    20. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.