IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252502.html
   My bibliography  Save this article

An evolutionary analysis of new energy and industry policy tools in China based on large-scale policy topic modeling

Author

Listed:
  • Qiqing Wang
  • Cunbin Li

Abstract

This study investigates the evolution of provincial new energy policies and industries of China using a topic modeling approach. To this end, six out of 31 provinces in China are first selected as research samples, central and provincial new energy policies in the period of 2010 to 2019 are collected to establish a text corpus with 23, 674 documents. Then, the policy corpus is fed to two different topic models, one is the Latent Dirichlet Allocation for modeling static policy topics, another is the Dynamic Topic Model for extracting topics over time. Finally, the obtained topics are mapped into policy tools for comparisons. The dynamic policy topics are further analyzed with the panel data from provincial new energy industries. The results show that the provincial new energy policies moved to different tracks after about 2014 due to the regional conditions such as the economy and CO2 emission intensity. Underdeveloped provinces tend to use environment-oriented tools to regulate and control CO2 emissions, while developed regions employ the more balanced policy mix for improving new energy vehicles and other industries. Widespread hysteretic effects are revealed during the correlation analysis of the policy topics and new energy capacity.

Suggested Citation

  • Qiqing Wang & Cunbin Li, 2021. "An evolutionary analysis of new energy and industry policy tools in China based on large-scale policy topic modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0252502
    DOI: 10.1371/journal.pone.0252502
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252502
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252502&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan, Alexander Joel & Donou-Adonsou, Ficawoyi & Calkins, Lindsay Noble, 2019. "Subsidizing the sun: The impact of state policies on electricity generated from solar photovoltaic," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 1-10.
    2. Heng, Yan & Lu, Chao-Lin & Yu, Luqing & Gao, Zhifeng, 2020. "The heterogeneous preferences for solar energy policies among US households," Energy Policy, Elsevier, vol. 137(C).
    3. Dissanayake, Sumali & Mahadevan, Renuka & Asafu-Adjaye, John, 2020. "Evaluating the efficiency of carbon emissions policies in a large emitting developing country," Energy Policy, Elsevier, vol. 136(C).
    4. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    5. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    6. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    7. Beaudreau, Bernard C., 2010. "On the methodology of energy-GDP Granger causality tests," Energy, Elsevier, vol. 35(9), pages 3535-3539.
    8. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.
    9. Proskuryakova, Liliana N. & Ermolenko, Georgy V., 2019. "The future of Russia’s renewable energy sector: Trends, scenarios and policies," Renewable Energy, Elsevier, vol. 143(C), pages 1670-1686.
    10. Usman, Ojonugwa & Alola, Andrew Adewale & Sarkodie, Samuel Asumadu, 2020. "Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US," Renewable Energy, Elsevier, vol. 150(C), pages 266-277.
    11. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    12. Lüdering, Jochen & Tillmann, Peter, 2020. "Monetary policy on twitter and asset prices: Evidence from computational text analysis," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbo Wang & Aimin Zhu & Lijuan Yu & Hongjiang Wer, 2024. "Research on cooperative advertising strategies for dual channel supply chain of fresh agricultural products considering carbon reduction efficiency under retailer leadership," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    2. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Li, Na & Liu, Feng, 2022. "Spatiotemporal characteristics and influencing factors of renewable energy production in China: A spatial econometric analysis," Energy Economics, Elsevier, vol. 116(C).
    3. Abdul Rehman & Magdalena Radulescu & Hengyun Ma & Vishal Dagar & Imran Hussain & Muhammad Kamran Khan, 2021. "The Impact of Globalization, Energy Use, and Trade on Ecological Footprint in Pakistan: Does Environmental Sustainability Exist?," Energies, MDPI, vol. 14(17), pages 1-16, August.
    4. Kilinc-Ata, Nurcan & Proskuryakova, Liliana N., 2023. "Empirical analysis of the Russian power industry's transition to sustainability," Utilities Policy, Elsevier, vol. 82(C).
    5. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    6. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    7. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Obadiah Ibrahim Damak & Hasan Güngör, 2023. "Globalization and energy consumption's effect on Japan's ecological imprint: Implications for environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(5), pages 3881-3895, October.
    9. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    10. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Yugang He, 2022. "Renewable and Non-Renewable Energy Consumption and Trade Policy: Do They Matter for Environmental Sustainability?," Energies, MDPI, vol. 15(10), pages 1-17, May.
    12. Jacek Lukasz Wilk-Jakubowski & Lukasz Pawlik & Grzegorz Wilk-Jakubowski & Radoslaw Harabin, 2025. "State-of-the-Art in the Use of Renewable Energy Sources on the Example of Wind, Wave Energy, Tidal Energy, and Energy Harvesting: A Review from 2015 to 2024," Energies, MDPI, vol. 18(6), pages 1-26, March.
    13. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    14. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
    15. Xie, Yutang & Cao, Yujia & Li, Xiaotao, 2023. "The importance of trade policy uncertainty to energy consumption in a changing world," Finance Research Letters, Elsevier, vol. 52(C).
    16. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    17. Zhi-Jiang Liu & Vera Snezhko & Anastasia Kurilova, 2022. "International legal instruments for stimulating green building and construction business: Russian case study," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(1), pages 157-175, March.
    18. Bongsuk Sung & Hong Chen & Sang Do Park, 2024. "Who Drives Policy Discourse of China’s Energy Transition: Considering Time Series Perspective, Network and Core-Peripheral Analysis," SAGE Open, , vol. 14(2), pages 21582440241, May.
    19. Mostafayi Darmian, Sobhan & Tavana, Madjid & Ribeiro-Navarrete, Samuel, 2024. "An investment evaluation and incentive allocation model for public-private partnerships in renewable energy development projects," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    20. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.