IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp308-325.html
   My bibliography  Save this article

Optimal wind power generation investment, considering voltage stability of power systems

Author

Listed:
  • Nikkhah, Saman
  • Rabiee, Abbas

Abstract

Studies show that improper sizing and placement of wind farms (WFs) lead to undesired investment and operation costs as well as the risk of voltage instability. Thus, optimal placement of WFs and enough loading margin (LM) are important factors which ensure the voltage stability of system as well as optimal investment and expenditure for WFs development. In this paper, modal analysis is used to determine the optimal place of WFs from the voltage stability viewpoint. Moreover, a new voltage stability constrained wind energy planning (VSC-WEP) model is proposed to determine the optimal yearly wind power penetration while satisfying voltage stability constraints. A 10-years horizon is considered and the net profit from the energy procurement via the WFs' installed optimally, is maximized. Furthermore, the added capacity of WFs and the net profit are analyzed by sensitivity analyzes to investigate the impact of various technical and financial factors on the obtained results. The proposed VSC-WEP model is implemented on the IEEE New-England 39-bus test system, and solved by General Algebraic Modeling System (GAMS) optimization package. The simulation results demonstrate the capability of the proposed model for optimal determination of WFs capacity while preserving a proper LM of system.

Suggested Citation

  • Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:308-325
    DOI: 10.1016/j.renene.2017.08.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roy, N.K. & Pota, H.R. & Hossain, M.J., 2013. "Reactive power management of distribution networks with wind generation for improving voltage stability," Renewable Energy, Elsevier, vol. 58(C), pages 85-94.
    2. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    3. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    4. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saman Nikkhah & Arman Alahyari & Adib Allahham & Khaled Alawasa, 2023. "Optimal Integration of Hybrid Energy Systems: A Security-Constrained Network Topology Reconfiguration," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Huang, Yuehui & Chen, Jianjun & Li, Yahe & Chen, Zhe & Blaabjerg, Frede, 2024. "Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms," Applied Energy, Elsevier, vol. 355(C).
    3. kianmehr, Ehsan & Nikkhah, Saman & Rabiee, Abbas, 2019. "Multi-objective stochastic model for joint optimal allocation of DG units and network reconfiguration from DG owner’s and DisCo’s perspectives," Renewable Energy, Elsevier, vol. 132(C), pages 471-485.
    4. Mohammad Reza Baghayipour & Amin Hajizadeh & Amir Shahirinia & Zhe Chen, 2018. "Dynamic Placement Analysis of Wind Power Generation Units in Distribution Power Systems," Energies, MDPI, vol. 11(9), pages 1-16, September.
    5. Ozcel Cangul & Roberto Rocchetta & Murat Fahrioglu & Edoardo Patelli, 2023. "Optimal Allocation and Sizing of Decentralized Solar Photovoltaic Generators Using Unit Financial Impact Indicator," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    6. Adel F. Alrasheedi & Ahmad M. Alshamrani & Khalid A. Alnowibet, 2023. "Investing in Wind Energy Using Bi-Level Linear Fractional Programming," Energies, MDPI, vol. 16(13), pages 1-14, June.
    7. Yadegari, Saeed & Abdi, Hamdi & Nikkhah, Saman, 2020. "Risk-averse multi-objective optimal combined heat and power planning considering voltage security constraints," Energy, Elsevier, vol. 212(C).
    8. Yin, Linfei & Tao, Min, 2022. "Correlational broad learning for optimal scheduling of integrated energy systems considering distributed ground source heat pump heat storage systems," Energy, Elsevier, vol. 239(PE).
    9. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabiee, Abbas & Nikkhah, Saman & Soroudi, Alireza, 2018. "Information gap decision theory to deal with long-term wind energy planning considering voltage stability," Energy, Elsevier, vol. 147(C), pages 451-463.
    2. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    3. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    4. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    5. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    6. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    7. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    8. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    9. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    10. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    11. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    12. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    13. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    14. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    15. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    17. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    18. Singh, Bindeshwar & Mukherjee, V. & Tiwari, Prabhakar, 2015. "A survey on impact assessment of DG and FACTS controllers in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 846-882.
    19. Khadijah Barashid & Amr Munshi & Ahmad Alhindi, 2023. "Wind Farm Power Prediction Considering Layout and Wake Effect: Case Study of Saudi Arabia," Energies, MDPI, vol. 16(2), pages 1-22, January.
    20. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:308-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.