IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i9d10.1038_s41558-018-0253-3.html
   My bibliography  Save this article

Impact of anthropogenic CO2 emissions on global human nutrition

Author

Listed:
  • Matthew R. Smith

    (Harvard T.H. Chan School of Public Health)

  • Samuel S. Myers

    (Harvard T.H. Chan School of Public Health
    Harvard University Center for the Environment)

Abstract

Atmospheric CO2 is on pace to surpass 550 ppm in the next 30–80 years. Many food crops grown under 550 ppm have protein, iron and zinc contents that are reduced by 3–17% compared with current conditions. We analysed the impact of elevated CO2 concentrations on the sufficiency of dietary intake of iron, zinc and protein for the populations of 151 countries using a model of per-capita food availability stratified by age and sex, assuming constant diets and excluding other climate impacts on food production. We estimate that elevated CO2 could cause an additional 175 million people to be zinc deficient and an additional 122 million people to be protein deficient (assuming 2050 population and CO2 projections). For iron, 1.4 billion women of childbearing age and children under 5 are in countries with greater than 20% anaemia prevalence and would lose >4% of dietary iron. Regions at highest risk—South and Southeast Asia, Africa, and the Middle East—require extra precautions to sustain an already tenuous advance towards improved public health.

Suggested Citation

  • Matthew R. Smith & Samuel S. Myers, 2018. "Impact of anthropogenic CO2 emissions on global human nutrition," Nature Climate Change, Nature, vol. 8(9), pages 834-839, September.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:9:d:10.1038_s41558-018-0253-3
    DOI: 10.1038/s41558-018-0253-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0253-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0253-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert B. Jackson & Josep G. Canadell & Corinne Le Quéré & Robbie M. Andrew & Jan Ivar Korsbakken & Glen P. Peters & Nebojsa Nakicenovic, 2016. "Reaching peak emissions," Nature Climate Change, Nature, vol. 6(1), pages 7-10, January.
    2. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    3. Samuel S. Myers & Antonella Zanobetti & Itai Kloog & Peter Huybers & Andrew D. B. Leakey & Arnold J. Bloom & Eli Carlisle & Lee H. Dietterich & Glenn Fitzgerald & Toshihiro Hasegawa & N. Michele Holbr, 2014. "Increasing CO2 threatens human nutrition," Nature, Nature, vol. 510(7503), pages 139-142, June.
    4. International Food Policy Research Institute, 2015. "Global Nutrition Report Actions and Accountability to Advance Nutrition and Sustainable Development," Working Papers id:7543, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Vogliano & Jessica E. Raneri & Jane Coad & Shane Tutua & Carol Wham & Carl Lachat & Barbara Burlingame, 2021. "Dietary agrobiodiversity for improved nutrition and health outcomes within a transitioning indigenous Solomon Island food system," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 819-847, August.
    2. Hertel, Thomas & Zanetti De Lima, Cicero, 2020. "Climate Impacts on Agriculture: Searching for Keys under the Streetlight," Conference papers 333227, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Emily Injete Amondo & Emmanuel Nshakira-Rukundo & Alisher Mirzabaev, 2023. "The effect of extreme weather events on child nutrition and health," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 571-596, June.
    4. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    5. Sugiawan, Yogi & Kurniawan, Robi & Managi, Shunsuke, 2019. "Are carbon dioxide emission reductions compatible with sustainable well-being?," Applied Energy, Elsevier, vol. 242(C), pages 1-11.
    6. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    7. Court Victor & Florent Mc Isaac, 2019. "A Representation of the World Population Dynamics for Integrated Assessment Models," Working Papers hal-03192539, HAL.
    8. Elizabeth R. H. Moore & Matthew R. Smith & Debbie Humphries & Robert Dubrow & Samuel S. Myers, 2020. "The Mismatch between Anthropogenic CO 2 Emissions and Their Consequences for Human Zinc and Protein Sufficiency Highlights Important Environmental Justice Issues," Challenges, MDPI, vol. 11(1), pages 1-11, February.
    9. Gloria Macassa & Ana Isabel Ribeiro & Anneli Marttila & Frida Stål & José Pedro Silva & Michelle Rydback & Mamunur Rashid & Henrique Barros, 2022. "Public Health Aspects of Climate Change Adaptation in Three Cities: A Qualitative Study," IJERPH, MDPI, vol. 19(16), pages 1-17, August.
    10. Clapp, Jennifer & Moseley, William G. & Burlingame, Barbara & Termine, Paola, 2022. "Viewpoint: The case for a six-dimensional food security framework," Food Policy, Elsevier, vol. 106(C).
    11. Chen, Qiuju & Ding, Wenjin & Sun, Hongjuan & Peng, Tongjiang, 2019. "Mineral carbonation of yellow phosphorus slag and characterization of carbonated product," Energy, Elsevier, vol. 188(C).
    12. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Court Victor & Florent Mc Isaac, 2019. "A Representation of the World Population Dynamics for Integrated Assessment Models," Working Papers hal-03192539, HAL.
    14. Christopher D. Golden & J. Zachary Koehn & Alon Shepon & Simone Passarelli & Christopher M. Free & Daniel F. Viana & Holger Matthey & Jacob G. Eurich & Jessica A. Gephart & Etienne Fluet-Chouinard & E, 2021. "Aquatic foods to nourish nations," Nature, Nature, vol. 598(7880), pages 315-320, October.
    15. Arifa Jannat & Yuki Ishikawa-Ishiwata & Jun Furuya, 2021. "Assessing the Impacts of Climate Variations on the Potato Production in Bangladesh: A Supply and Demand Model Approach," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    16. Panneerselvam Peramaiyan & Peter Craufurd & Virender Kumar & Lavanya P. Seelan & Andrew J. McDonald & Balwinder-Singh & Avinash Kishore & Sudhanshu Singh, 2022. "Agronomic Biofortification of Zinc in Rice for Diminishing Malnutrition in South Asia," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    17. Henrik Saxe & Lorie Hamelin & Torben Hinrichsen & Henrik Wenzel, 2018. "Production of Pig Feed under Future Atmospheric CO 2 Concentrations: Changes in Crop Content and Chemical Composition, Land Use, Environmental Impact, and Socio-Economic Consequences," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    18. Nath, Ishan, 2022. "Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation," Conference papers 333404, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Daniel Lach & Jaroslaw Polanski & Maciej Kapkowski, 2022. "CO 2 —A Crisis or Novel Functionalization Opportunity?," Energies, MDPI, vol. 15(5), pages 1-20, February.
    20. Hertel, Thomas W. & de Lima, Cicero Z., 2020. "Viewpoint: Climate impacts on agriculture: Searching for keys under the streetlight," Food Policy, Elsevier, vol. 95(C).
    21. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Shan, Jinhuan & Wang, Di, 2022. "Energy output and pavement performance of road thermoelectric generator system," Renewable Energy, Elsevier, vol. 201(P2), pages 22-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayoub Al-Jawaldeh & Maya Nabhani & Mandy Taktouk & Lara Nasreddine, 2022. "Climate Change and Nutrition: Implications for the Eastern Mediterranean Region," IJERPH, MDPI, vol. 19(24), pages 1-27, December.
    2. Raissa Sorgho & Isabel Mank & Moubassira Kagoné & Aurélia Souares & Ina Danquah & Rainer Sauerborn, 2020. "“We Will Always Ask Ourselves the Question of How to Feed the Family”: Subsistence Farmers’ Perceptions on Adaptation to Climate Change in Burkina Faso," IJERPH, MDPI, vol. 17(19), pages 1-25, October.
    3. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    4. Mohammad Zarei & Abdolsamad K. Amirkolaei & Jesse T. Trushenski & Wendy M. Sealey & Michael H. Schwarz & Reza Ovissipour, 2022. "Sorghum as a Potential Valuable Aquafeed Ingredient: Nutritional Quality and Digestibility," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    5. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    6. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    7. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    8. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    9. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    10. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    11. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    12. Leah Salm & Nicholas Nisbett & Laura Cramer & Stuart Gillespie & Philip Thornton, 2021. "How climate change interacts with inequity to affect nutrition," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    13. Shaosheng Jin & Bashiru Mansaray & Xin Jin & Haoyang Li, 2020. "Farmers’ preferences for attributes of rice varieties in Sierra Leone," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(5), pages 1185-1197, October.
    14. Felipe Vásquez & Gibran Vita & Daniel B. Müller, 2018. "Food Security for an Aging and Heavier Population," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    15. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    16. Baffes,John & Kabundi,Alain Ntumba & Nagle,Peter Stephen Oliver & Ohnsorge,Franziska Lieselotte, 2018. "The role of major emerging markets in global commodity demand," Policy Research Working Paper Series 8495, The World Bank.
    17. Anna-Mara Schön & Marita Böhringer, 2023. "Land Consumption for Current Diets Compared with That for the Planetary Health Diet—How Many People Can Our Land Feed?," Sustainability, MDPI, vol. 15(11), pages 1-35, May.
    18. Marco Stenborg Petterson & David Seim & Jesse M. Shapiro, 2023. "Bounds on a Slope from Size Restrictions on Economic Shocks," American Economic Journal: Microeconomics, American Economic Association, vol. 15(3), pages 552-572, August.
    19. Sands, Ronald & Beach, Robert, 2022. "Nutrition Indicators for CGE Models," Conference papers 333467, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Brockmeier, Martina & Frandsen, Soren & Frommknecht, Mira & Gorman, Ryan & Korovin, Vladimir & Urban, Kirsten, 2016. "A Balanced Global Food Demand and Supply in 2050: How can we meet the challenge?," Conference papers 332685, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:9:d:10.1038_s41558-018-0253-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.