IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008576.html
   My bibliography  Save this article

Spatiotemporal changes in PV potential and extreme characteristics in China under SSP scenarios

Author

Listed:
  • Zhuo, Chen
  • Wei, Li
  • Zhangrong, Pan
  • Chenchen, Liu
  • Huiyuan, Wang
  • Junhong, Guo

Abstract

Changes in environmental conditions, such as radiation and temperature, driven by climate change, will significantly impact photovoltaic (PV) power generation. In this paper, we utilize 14 models in the NASA Earth Exchange Global Daily Downscaled Projections (GDDP) climate model ensemble to analyze the spatial and temporal trends of PV potential and photovoltaic drought under the SSP2-4.5 and SSP5-8.5 scenarios during future carbon peak (2026–2035) and carbon neutrality (2056–2065) periods in China. The results indicate that, compared to the baseline period (2005–2014), the spatial variation of future annual mean PV capacity factor shows a declining trend in the western region, but increases in the southeastern region. Furthermore, the change in capacity factor during the carbon neutrality period is greater than during the carbon peak period, particularly under the SSP5-8.5 scenario. Seasonally, the most significant changes in PV capacity factor occur in autumn and winter. Under the SSP5-8.5 scenario during the carbon neutrality period, the change in autumn PV capacity factor exceeds 3 %. Regarding intra-annual variability, during the carbon peak period, the intra-annual variability of PV capacity factor declines in most parts of China, particularly in some southeastern regions, decreasing by over 5 %. Conversely, in the carbon neutrality period, intra-annual variability will increase in northeastern and central regions, with increases exceeding 4 %. This implies that these regions may face greater challenges in balancing supply and demand and managing stability in their power systems. Similar to climatic extreme events, the spatial-temporal characteristics of photovoltaic “drought” are analyzed. During the carbon neutrality period, the frequency of photovoltaic droughts (PVDF) in China is projected to decrease by approximately 10 % compared to historical periods, while the severity of photovoltaic droughts (PVDS) will significantly increase, rising by 17 % (36 %) under the SSP2-4.5 (SSP5-8.5) scenarios. Regionally, the frequency, duration, and severity of photovoltaic drought events in most regions of China are all diminishing, while there will be an increase in the northwestern and northeastern regions, with the severity metric rising by 63 % and 49 %, respectively. This indicates that the situation regarding photovoltaic droughts will become increasingly severe in these regions.

Suggested Citation

  • Zhuo, Chen & Wei, Li & Zhangrong, Pan & Chenchen, Liu & Huiyuan, Wang & Junhong, Guo, 2025. "Spatiotemporal changes in PV potential and extreme characteristics in China under SSP scenarios," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008576
    DOI: 10.1016/j.energy.2025.135215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    2. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    4. Mavromatakis, F. & Makrides, G. & Georghiou, G. & Pothrakis, A. & Franghiadakis, Y. & Drakakis, E. & Koudoumas, E., 2010. "Modeling the photovoltaic potential of a site," Renewable Energy, Elsevier, vol. 35(7), pages 1387-1390.
    5. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    6. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    8. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    9. Chen, Xie & Zhou, Chaohui & Tian, Zhiyong & Mao, Hongzhi & Luo, Yongqiang & Sun, Deyu & Fan, Jianhua & Jiang, Liguang & Deng, Jie & Rosen, Marc A., 2023. "Different photovoltaic power potential variations in East and West China," Applied Energy, Elsevier, vol. 351(C).
    10. Guo, Junhong & Chen, Zhuo & Meng, Jing & Zheng, Heran & Fan, Yuri & Ji, Ling & Wang, Xiuquan & Liang, Xi, 2024. "Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
    12. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    13. Zuluaga, Cristian Felipe & Avila-Diaz, Alvaro & Justino, Flavio B. & Martins, Fernando Ramos & Ceron, Wilmar L., 2022. "The climate change perspective of photovoltaic power potential in Brazil," Renewable Energy, Elsevier, vol. 193(C), pages 1019-1031.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xie & Mao, Hongzhi & Cheng, Nan & Ma, Ling & Tian, Zhiyong & Luo, Yongqiang & Zhou, Chaohui & Li, Huai & Wang, Qian & Kong, Weiqiang & Fan, Jianhua, 2024. "Climate change impacts on global photovoltaic variability," Applied Energy, Elsevier, vol. 374(C).
    2. Chen, Zhuo & Li, Wei & Wang, Xiaoxuan & Bai, Jingjie & Wang, Xiuquan & Guo, Junhong, 2024. "Evaluating wind and solar complementarity in China: Considering climate change and source-load matching dynamics," Energy, Elsevier, vol. 312(C).
    3. Zuo, Jingping & Qian, Cuncun & Su, Bing & Ji, Hao & Xu, Yang & Peng, Zhipeng, 2024. "Evaluation of future renewable energy drought risk in China based on CMIP6," Renewable Energy, Elsevier, vol. 225(C).
    4. Fälth, Hanna Ek & Hedenus, Fredrik & Reichenberg, Lina & Mattsson, Niclas, 2025. "Through energy droughts: Hydropower’s ability to sustain a high output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    5. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    6. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    7. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    8. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    9. Lindberg, O. & Lingfors, D. & Arnqvist, J., 2022. "Analyzing the mechanisms behind temporal correlation between power sources using frequency separated time scales: A Swedish case study on PV and wind," Energy, Elsevier, vol. 259(C).
    10. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    11. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    12. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.
    13. António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
    14. Allen, Sam & Otero, Noelia, 2023. "Standardised indices to monitor energy droughts," Renewable Energy, Elsevier, vol. 217(C).
    15. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    16. Claudia Gutiérrez & Alba de la Vara & Juan Jesús González-Alemán & Miguel Ángel Gaertner, 2021. "Impact of Climate Change on Wind and Photovoltaic Energy Resources in the Canary Islands and Adjacent Regions," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    17. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    18. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    19. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    20. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.