IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007979.html
   My bibliography  Save this article

Review on electrospinning anode and separators for lithium ion batteries

Author

Listed:
  • Liu, Jin-Hua
  • Wang, Peng
  • Gao, Zhihan
  • Li, Xuehao
  • Cui, Wenbo
  • Li, Ru
  • Ramakrishna, Seeram
  • Zhang, Jun
  • Long, Yun-Ze

Abstract

Lithium-ion batteries (LIBs) are widely used in electronic devices and electric vehicles. With the increasing demand for lithium-ion batteries, it is necessary to develop safe LIBs with high energy density. Nanofibers prepared by electrospinning have many advantages, including small diameters, large specific surface area, small pore sizes, high porosity, and good pore connectivity. Therefore, electrospun nanofibers are extensively used in energy-related applications, while electrospun films exhibit excellent ductility and can be potentially utilized in flexible batteries. This paper focuses on the recent advances in electrospinning nanomaterials for the anodes and separators of LIBs. In addition, electrospinning can be performed to produce materials for sodium/potassium-ion batteries and solid-state batteries. Finally, the commercialization of electrospinning technology and prospects of battery industrialization as well as the future development of LIBs and other alternative materials are discussed.

Suggested Citation

  • Liu, Jin-Hua & Wang, Peng & Gao, Zhihan & Li, Xuehao & Cui, Wenbo & Li, Ru & Ramakrishna, Seeram & Zhang, Jun & Long, Yun-Ze, 2024. "Review on electrospinning anode and separators for lithium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007979
    DOI: 10.1016/j.rser.2023.113939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiqing He & Chenhao Lu & Haibo Jiang & Fei Han & Xiang Shi & Jingxia Wu & Liyuan Wang & Taiqiang Chen & Jiajia Wang & Ye Zhang & Han Yang & Guoqi Zhang & Xuemei Sun & Bingjie Wang & Peining Chen & Yon, 2021. "Scalable production of high-performing woven lithium-ion fibre batteries," Nature, Nature, vol. 597(7874), pages 57-63, September.
    2. Miedema, Jan H. & Moll, Henri C., 2013. "Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until2050," Resources Policy, Elsevier, vol. 38(2), pages 204-211.
    3. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    4. Dingding Zong & Leitao Cao & Xia Yin & Yang Si & Shichao Zhang & Jianyong Yu & Bin Ding, 2021. "Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Kashif & Sadia Rasul & Mohamedazeem M. Mohideen & Yong Liu, 2025. "Advancing Electrochemical Energy Storage: A Review of Electrospinning Factors and Their Impact," Energies, MDPI, vol. 18(9), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Luo, Jiaqi & Yang, Ying & Jiang, Yan, 2025. "Assessing the antecedents, processes, and consequences of sustainable electric vehicle battery recycling: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 282(C).
    3. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    5. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    7. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    8. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Jing, Qi & Yu, Lin & Lan, Fengyi & Li, Yuntao, 2024. "Quantitative assessment rules and models for dynamic disaster risk in high-density gas gathering stations: Practical application in a largest CBM gathering station," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    12. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    13. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    14. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    15. Ma, Tian & Zhang, Qi & Tang, Yanyan & Liu, Boyu & Li, Yan & Wang, Lu, 2024. "A review on the industrial chain of recycling critical metals from electric vehicle batteries: Current status, challenges, and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    16. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    17. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.
    18. Esmeralda López-Garza & René Fernando Domínguez-Cruz & Fernando Martell-Chávez & Iván Salgado-Tránsito, 2022. "Fuzzy Logic and Linear Programming-Based Power Grid-Enhanced Economical Dispatch for Sustainable and Stable Grid Operation in Eastern Mexico," Energies, MDPI, vol. 15(11), pages 1-18, June.
    19. Shinichiro Asayama, 2021. "Threshold, budget and deadline: beyond the discourse of climate scarcity and control," Climatic Change, Springer, vol. 167(3), pages 1-16, August.
    20. Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.