IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v170y2022ics1364032122008516.html
   My bibliography  Save this article

Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail

Author

Listed:
  • Liu, Qingchen
  • Li, Hongchang
  • Shang, Wen-long
  • Wang, Kun

Abstract

Chinese government has set a goal to reach carbon peak and achieve carbon neutrality, endeavoring to gradually realize net-zero carbon dioxide (CO2) emission. Moreover, the new transport technology has also been fast developed, represented by the quick expansion of the high-speed rail (HSR) system in China. However, there has been very little investigation on how the HSR can affect city-level emission and urban air quality. Especially, the potential spatial spillover effect and the mechanism of such potential impact have not been examined. Based on the urban air quality index (AQI) of 286 Chinese cities over the 2016–2019 period, this study first adopts the spatial auto-correlation analysis to quantify the spatio-temporal characteristics of Chinese cities' AQI. Then, a spatial difference-in-differences (SDID) model and the spatial Dubin model (SDM) are estimated to shed light on how Chinese cities' air quality can be affected by HSR. This study identifies apparent spatio-temporal distribution patterns in Chinese cities' air quality. We found that the opening of HSR in Chinese cities significantly improves the urban air quality by reducing AQI by an average of 4%. Moreover, the spatial auto-correlation coefficient is 0.0897 and statistically significant. HSR opening in the adjacent city can also improve one city's AQI by an average of 1.3% (i.e., the neighboring effect). We also highlighted and verified the mechanism of such a positive HSR impact on the urban air quality. First, as a cleaner transport mode, HSR helps divert traffic from other more polluting modes. HSR also helps promote the city's tertiary industry, leading to fewer emissions. The heterogeneous analyses further demonstrated that HSR is more effective to improve the urban air quality in eastern region (with the AQI reduction of 5.88%) and western regions (with AQI reduction of 7.25%).

Suggested Citation

  • Liu, Qingchen & Li, Hongchang & Shang, Wen-long & Wang, Kun, 2022. "Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008516
    DOI: 10.1016/j.rser.2022.112970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuanglin Fang & Haimeng Liu & Guangdong Li & Dongqi Sun & Zhuang Miao, 2015. "Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models," Sustainability, MDPI, vol. 7(11), pages 1-23, November.
    2. Yue-Hua Dai & Wei-Xing Zhou, 2017. "Temporal and spatial correlation patterns of air pollutants in Chinese cities," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-24, August.
    3. Haoming Guan & Qiao Li & Wen-Ze Yue, 2021. "Spatial Spillover Effects of Economic Growth Based on High-Speed Railways in Northeast China," Complexity, Hindawi, vol. 2021, pages 1-11, April.
    4. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    5. Zhou, Kaile & Li, Yiwen, 2019. "Influencing factors and fluctuation characteristics of China’s carbon emission trading price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 459-474.
    6. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    7. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    8. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    9. Maximilian Auffhammer & Ryan Kellogg, 2011. "Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality," American Economic Review, American Economic Association, vol. 101(6), pages 2687-2722, October.
    10. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    11. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    12. Lalive, Rafael & Luechinger, Simon & Schmutzler, Armin, 2018. "Does expanding regional train service reduce air pollution?," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 744-764.
    13. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    14. Yang, Zaoli & Shang, Wen-Long & Zhang, Haoran & Garg, Harish & Han, Chunjia, 2022. "Assessing the green distribution transformer manufacturing process using a cloud-based q-rung orthopair fuzzy multi-criteria framework," Applied Energy, Elsevier, vol. 311(C).
    15. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    16. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    17. Nur Fatma Fadilah Yaacob & Muhamad Razuhanafi Mat Yazid & Khairul Nizam Abdul Maulud & Noor Ezlin Ahmad Basri, 2020. "A Review of the Measurement Method, Analysis and Implementation Policy of Carbon Dioxide Emission from Transportation," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    18. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    19. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xi & Gao, Yaru & Liu, Xiaojun & Sun, Yongkai & Li, Na & Liu, Jianghua, 2023. "ACHRA: A novel model to study the propagation of clean heating acceptance among rural residents based on social networks," Applied Energy, Elsevier, vol. 333(C).
    2. Xi, Chang & Ren, Chen & Zhang, Ruijun & Wang, Junqi & Feng, Zhuangbo & Haghighat, Fariborz & Cao, Shi-Jie, 2023. "Nature-based solution for urban traffic heat mitigation facing carbon neutrality: sustainable design of roadside green belts," Applied Energy, Elsevier, vol. 343(C).
    3. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "How does smart transportation technology promote green total factor productivity? The case of China," Research in Transportation Economics, Elsevier, vol. 101(C).
    4. Chen, Xinqiang & Lv, Siying & Shang, Wen-long & Wu, Huafeng & Xian, Jiangfeng & Song, Chengcheng, 2024. "Ship energy consumption analysis and carbon emission exploitation via spatial-temporal maritime data," Applied Energy, Elsevier, vol. 360(C).
    5. Wang, Yao & Jin, Huan & Zheng, Shiyuan & Shang, Wen-Long & Wang, Kun, 2023. "Bike-sharing duopoly competition under government regulation," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    2. Huang, Yan & Ma, Liang & Cao, Jason, 2023. "Exploring spatial heterogeneity in the high-speed rail impact on air quality," Journal of Transport Geography, Elsevier, vol. 106(C).
    3. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    4. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    5. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    6. Wang, Zhaohua & Ma, Junhua & Zhang, Bin & Yang, Yuantao & Wang, Bo & Zhao, Wenhui, 2023. "Does high speed railway alleviate housing vacancy rates? Evidence from smart meter data of household electricity consumption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    7. Jiang, Mei & Jiang, Changmin & Xiao, Yi-bin & Wang, Chunan, 2021. "Air-HSR cooperation: Impacts on service frequency and environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    8. Zhang, Fangni & Yang, Zhiwei & Jiao, Jingjuan & Liu, Wei & Wu, Wenjie, 2020. "The effects of high-speed rail development on regional equity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 180-202.
    9. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    10. Álvarez-SanJaime, Óscar & Cantos-Sanchez, Pedro & Moner-Colonques, Rafael & Sempere-Monerris, Jose J., 2020. "Pricing and infrastructure fees in shaping cooperation in a model of high-speed rail and airline competition," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 22-41.
    11. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Wang, Yixiao & Pels, Eric & Teunter, Ruud H. & Sun, Luoyi & Wu, Jianhong, 2023. "Railway liberalization, airport congestion toll, and infrastructure pricing: Modelling and numerical analysis for European and Chinese markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    13. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
    14. Gao, Yanyan & Zheng, Jianghuai & Wang, Xin, 2022. "Does high-speed rail reduce environmental pollution? Establishment-level evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    15. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    16. Chen, Yu & Zhao, Changyi & Chen, Shan & Chen, Wenqing & Wan, Kunyang & Wei, Jia, 2023. "Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions," Energy, Elsevier, vol. 282(C).
    17. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.
    18. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.
    19. Niklas Gohl & Philipp Schrauth, 2022. "Ticket to Paradise? The Effect of a Public Transport Subsidy on Air Quality," CEPA Discussion Papers 50, Center for Economic Policy Analysis.
    20. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.