IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics136403212101162x.html
   My bibliography  Save this article

Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant

Author

Listed:
  • Marami, Hadis
  • He, Li
  • Rafiee, Shahin
  • Khoshnevisan, Benyamin
  • Tsapekos, Panagiotis
  • Mobli, Hossein
  • Elyasi, Seyedeh Nashmin
  • Liu, Hongbin
  • Angelidaki, Irini

Abstract

The growing population and the consequent protein scarcity have led to innovation in proteinaceous feed production methods. In this regard, the upcycling of nitrogen rich effluents into microbial protein (MP)/single cell protein (SCP) is considered as an innovative solution. This paper aims to employ life cycle assessment to identify the most environmentally friendly strategy to upcycle nitrogen (N) and carbon (C) flows from wastewater treatment plant (WWTP) into MP. Accordingly, several pathways for integrating WWTP and MP production facility were evaluated, in terms of C source (i.e., biogas or biomethane) and the pretreatment method applied to the reject water (RW) (i.e., centrifugation + filtration + pasteurization, electrochemical extraction, bio-electrochemical extraction). The results indicated that electrochemical and bio-electrochemical N recovery not only safely extracted N from RW but also led to promising solution for MP production from WWTP effluents. The pathway including bio-electrochemical N recovery and use of biologically upgraded biogas for MP had 42.17%, 195.95%, and 172.03% better environmental performance regarding human health, ecosystem quality, and resource scarcity, respectively, compared with standalone WWTP without MP production. However, the electrochemical N recovery outperformed other scenarios in the human health damage category with a net impact of 2.72 DALY/FU and in ecosystem quality damage category with a saving of −0.033 Species/FU. The results reported herein indicated that the use of chemical nutrients to enrich the cultivation medium had significant impacts on the overall environmental performance of the suggested biorefinery. Decreasing the consumption of synthetic nutrients and improving N to protein conversion efficiency by 20% can make the established pathway much more competitive with conventional proteinaceous feed sources such as soybean meal.

Suggested Citation

  • Marami, Hadis & He, Li & Rafiee, Shahin & Khoshnevisan, Benyamin & Tsapekos, Panagiotis & Mobli, Hossein & Elyasi, Seyedeh Nashmin & Liu, Hongbin & Angelidaki, Irini, 2022. "Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s136403212101162x
    DOI: 10.1016/j.rser.2021.111895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212101162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuanyuan Du & Ying Ge & Yuan Ren & Xing Fan & Kaixuan Pan & Linshan Lin & Xu Wu & Yong Min & Laura A. Meyerson & Mikko Heino & Scott X. Chang & Xiaozi Liu & Feng Mao & Guofu Yang & Changhui Peng & Zel, 2018. "A global strategy to mitigate the environmental impact of China’s ruminant consumption boom," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    4. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
    6. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production," Energies, MDPI, vol. 16(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Jiaxin Lu & Atif Muhmood & Panagiotis Tsapekos & Xian Cui & Yuwen Guo & Yi Zheng & Yizhan Qiu & Pan Wang & Lianhai Ren, 2022. "Untargeted Metabolomics Profiling of Bioactive Compounds under Varying Digestate Storage Conditions: Assessment of Antioxidant and Antifungal Activity," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    4. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    5. Tsapekos, Panagiotis & Khoshnevisan, Benyamin & Alvarado-Morales, Merlin & Zhu, Xinyu & Pan, Junting & Tian, Hailin & Angelidaki, Irini, 2021. "Upcycling the anaerobic digestion streams in a bioeconomy approach: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    7. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    8. Yue Jiang & Yue Zhang & Hong Li, 2023. "Research Progress and Analysis on Comprehensive Utilization of Livestock and Poultry Biogas Slurry as Agricultural Resources," Agriculture, MDPI, vol. 13(12), pages 1-17, November.
    9. Yuan Luo & Xiangzhuo Meng & Yuan Liu & Kokyo Oh & Hongyan Cheng, 2023. "Using Time-to-Event Model in Seed Germination Test to Evaluate Maturity during Cow Dung Composting," Sustainability, MDPI, vol. 15(5), pages 1-9, February.
    10. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    11. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    13. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    15. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    16. Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Pena-Levano, Luis & Taheripour, Farzad & Tyner, Wally, 2020. "Cost comparison of climate change mitigation options," Conference papers 333134, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).
    19. Wu, Le & Yang, Yong & Yan, Ting & Wang, Yuqi & Zheng, Lan & Qian, Kun & Hong, Furong, 2020. "Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s136403212101162x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.