IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p75-d1010372.html
   My bibliography  Save this article

Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production

Author

Listed:
  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

Abstract

Recent years have brought significant evolution and changes in wastewater treatment systems. New solutions are sought to improve treatment efficiency, reduce investment/operational costs, and comply with the principles of circular economy and zero waste. Microbial granules can serve as an alternative to conventional technologies. Indeed, there has been fast-growing interest in methods harnessing aerobic (AGS) and anaerobic (AnGS) granular sludge as well as microbial-bacterial granules (MBGS), as evidenced by the number of studies on the subject and commercial installations developed. The present paper identifies the strengths and weaknesses of wastewater treatment systems based on granular sludge (GS) and their potential for energy production, with a particular focus on establishing the R&D activities required for further advance of these technologies. In particular, the impact of granules on bioenergy conversion, including bio-oil recovery efficiency and biomethane/biohydrogen yields, and bioelectrochemical systems must be assessed and optimized.

Suggested Citation

  • Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Microbial Granule Technology—Prospects for Wastewater Treatment and Energy Production," Energies, MDPI, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:75-:d:1010372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingying Sun & Kexin Bi & Shi Yin, 2020. "Measuring and Integrating Risk Management into Green Innovation Practices for Green Manufacturing under the Global Value Chain," Sustainability, MDPI, vol. 12(2), pages 1-33, January.
    2. Kataki, S. & Chatterjee, S. & Vairale, M.G. & Sharma, S. & Dwivedi, S.K. & Gupta, D.K., 2021. "Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    4. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    5. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Marcin Dębowski & Marcin Zieliński & Marta Kisielewska & Joanna Kazimierowicz, 2020. "Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor," Energies, MDPI, vol. 13(9), pages 1-16, May.
    7. Marami, Hadis & He, Li & Rafiee, Shahin & Khoshnevisan, Benyamin & Tsapekos, Panagiotis & Mobli, Hossein & Elyasi, Seyedeh Nashmin & Liu, Hongbin & Angelidaki, Irini, 2022. "Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Maria Cristina Cameretti & Alessandro Cappiello & Roberta De Robbio & Raffaele Tuccillo, 2020. "Comparison between Hydrogen and Syngas Fuels in an Integrated Micro Gas Turbine/Solar Field with Storage," Energies, MDPI, vol. 13(18), pages 1-24, September.
    9. Markowski, Marek & Białobrzewski, Ireneusz & Zieliński, Marcin & Dębowski, Marcin & Krzemieniewski, Mirosław, 2014. "Optimizing low-temperature biogas production from biomass by anaerobic digestion," Renewable Energy, Elsevier, vol. 69(C), pages 219-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    3. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Marcin Zieliński, 2023. "Methane Production from Confectionery Wastewater Treated in the Anaerobic Labyrinth-Flow Bioreactor," Energies, MDPI, vol. 16(1), pages 1-18, January.
    4. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    5. Joanna Kazimierowicz & Izabela Bartkowska & Maria Walery, 2020. "Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation," Energies, MDPI, vol. 14(1), pages 1-13, December.
    6. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2023. "Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    7. Simon Gorecki & Jalal Possik & Gregory Zacharewicz & Yves Ducq & Nicolas Perry, 2020. "A Multicomponent Distributed Framework for Smart Production System Modeling and Simulation," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    8. Yongxiang Li & Sen Cheng & Zechen Chen & Zhenwen Chen & Haixia Guo & Anxin Ye, 2022. "Evaluation and Improvement of Shifting Quality of the Vehicle Gearbox from the Perspective of Sustainable Development in China’s Vehicle Industry," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    9. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    10. Magdalena Zubrzycka, & Janusz Wojdalski, & Karol Tucki, & Mariusz Zubrzycki, 2017. "Uwarunkowania rozwoju sektora biogazu rolniczego w Polsce," Journal of Agribusiness and Rural Development, University of Life Sciences, Poznan, Poland, vol. 43(1), March.
    11. Jiang, Liqun & Li, Yizhen & Pei, Haiyan, 2021. "Algal–bacterial consortia for bioproduct generation and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Rabiatul Adwiyah & Yusman Syaukat & Dikky Indrawan & Heti Mulyati, 2023. "Examining Sustainable Supply Chain Management (SSCM) Performance in the Palm Oil Industry with the Triple Bottom Line Approach," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    13. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Zhanna A. Mingaleva & Yurii V. Starkov, 2021. "The Role of Environmental Innovation in Green Modernization of Industrial Enterprises," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 5, pages 79-92, October.
    15. Jiao, Jian-ling & Zhang, Xiao-lan & Tang, Yun-shu, 2020. "What factors determine the survival of green innovative enterprises in China? -- A method based on fsQCA," Technology in Society, Elsevier, vol. 62(C).
    16. Qingyuan Yang & Shaorong Xu, 2022. "The Relationship between the Political Connections and Green Innovation Development of Chinese Enterprises—Empirical Analysis Based on Panel Data of Chinese A-Share Listed Companies," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    17. María J. López-Serrano & Fida Hussain Lakho & Stijn W.H. Van Hulle & Ana Batlles-delaFuente, 2023. "Life cycle cost assessment and economic analysis of a decentralized wastewater treatment to achieve water sustainability within the framework of circular economy," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 103-133, March.
    18. Díaz-Trujillo, Luis Alberto & Nápoles-Rivera, Fabricio, 2019. "Optimization of biogas supply chain in Mexico considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 139(C), pages 1227-1240.
    19. Joanna Kazimierowicz & Marcin Zieliński & Izabela Bartkowska & Marcin Dębowski, 2022. "Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    20. Beata Karolinczak & Wojciech Dąbrowski & Radosław Żyłka, 2021. "Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis," Energies, MDPI, vol. 14(17), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:75-:d:1010372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.