Discrete demand side control performance under dynamic building simulation: A heat pump application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2011.07.042
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Malik, Arif S, 1999. "Dynamic generating costs in DSM planning," Energy, Elsevier, vol. 24(1), pages 1-8.
- Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
- Dulleck, Uwe & Kaufmann, Sylvia, 2004. "Do customer information programs reduce household electricity demand?--the Irish program," Energy Policy, Elsevier, vol. 32(8), pages 1025-1032, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
- Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
- Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
- Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
- Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
- Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
- Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2022. "Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities," Renewable Energy, Elsevier, vol. 198(C), pages 1383-1397.
- Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
- Fischer, David & Wolf, Tobias & Wapler, Jeannette & Hollinger, Raphael & Madani, Hatef, 2017. "Model-based flexibility assessment of a residential heat pump pool," Energy, Elsevier, vol. 118(C), pages 853-864.
- Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
- Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
- Martin Almenta, M. & Morrow, D.J. & Best, R.J. & Fox, B. & Foley, A.M., 2016. "Domestic fridge-freezer load aggregation to support ancillary services," Renewable Energy, Elsevier, vol. 87(P2), pages 954-964.
- Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
- Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
- Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
- Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
- Bagdanavicius, Audrius & Jenkins, Nick, 2013. "Power requirements of ground source heat pumps in a residential area," Applied Energy, Elsevier, vol. 102(C), pages 591-600.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
- Elbaz Shimon & Zaiţ Adriana, 2016. "Efficient Use of Behavioral Tools to Reduce Electricity Demand of Domestic Consumers," Scientific Annals of Economics and Business, Sciendo, vol. 63(s1), pages 89-107, December.
- Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
- Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
- Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
- Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
- McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
- Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.
- Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014.
"Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs,"
Energy Policy, Elsevier, vol. 72(C), pages 164-174.
- Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Karol Suszczynski & Rafal Weron, 2013. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," HSC Research Reports HSC/13/10, Hugo Steinhaus Center, Wroclaw University of Technology.
- Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017.
"CO2 content of electricity losses,"
Energy Policy, Elsevier, vol. 104(C), pages 439-445.
- Daniel Daví Arderius & María-Eugenia Sanin & Elisa Trujillo-Baute, 2016. "CO2 Content of Electricity Losses," Documents de recherche 16-08, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Daniel Daví-Arderius & María-Eugenia Sanin & Elisa Trujillo-Baute, 2016. "Co2 content of electricity losses," Working Papers 2016/23, Institut d'Economia de Barcelona (IEB).
- Daniel Davi-Arderius & Maria-Eugenia Sanin & Elisa Trujillo-Baute, 2017. "CO2 content of electricity losses," Post-Print hal-02878048, HAL.
- Claire M. Weiller & Michael G. Pollitt, 2013.
"Platform markets and energy services,"
Working Papers
EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Claire M. Weiller & Michael G. Pollitt, 2013. "Platform Markets and Energy Services," Cambridge Working Papers in Economics 1361, Faculty of Economics, University of Cambridge.
- Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018.
"The economic impact of electricity losses,"
Energy Economics, Elsevier, vol. 75(C), pages 309-322.
- Maria Teresa Costa-Campi & Daniel Daví-Arderius & Elisa Trujillo-Baute, 2016. "The economic impact of electricity losses," Working Papers 2016/4, Institut d'Economia de Barcelona (IEB).
- Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
- Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
- Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
- Diffney, Seán & Lyons, Seán & Malaguzzi Valeri, Laura, 2013.
"Evaluation of the effect of the Power of One campaign on natural gas consumption,"
Energy Policy, Elsevier, vol. 62(C), pages 978-988.
- Diffney, Sean & Lyons, Sean & Malguzzi Valeri, Laura, 2009. "Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption," Papers WP280, Economic and Social Research Institute (ESRI).
- Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
- Antonio Paola & David Angeli & Goran Strbac, 2018. "On Distributed Scheduling of Flexible Demand and Nash Equilibria in the Electricity Market," Dynamic Games and Applications, Springer, vol. 8(4), pages 761-798, December.
- Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
- Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
More about this item
Keywords
Discrete demand side control; Building performance simulation; Heat pump; Thermal comfort; Renewable and low-carbon energy system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:85-95. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.