IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp1383-1397.html
   My bibliography  Save this article

Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities

Author

Listed:
  • Pastore, Lorenzo Mario
  • Lo Basso, Gianluigi
  • Ricciardi, Guido
  • de Santoli, Livio

Abstract

The deployment of intermittent renewables in distributed energy systems has to be managed so as to maximise local energy self-consumption. This paper deals with the application of sector coupling strategies to increase energy self-consumption and decarbonise urban energy districts. The aim of this work is to investigate the combined implementation of Power-to-Gas and Power-to-Heat strategies in Renewable Energy Communities. Power-to-Power, Power-to-Heat and Power-to-Gas systems, along with their combined adoption, have been implemented in a residential community under different renewable excess conditions. For each strategy, the storage system's size has been optimised and the configurations have been compared in energy, environmental and economic terms. The Power-to-Heat strategy is the most cost-effective solution, although it presents intrinsic limitations. The Power-to-Gas configuration involves the hydrogen injection into the gas grid, thus exploiting the local network as a free storage system. Higher self-consumption can be achieved; nevertheless, energy and emissions savings are lower due to the electrolyser poor efficiency. The combined application of the two sector coupling strategies allows the strategies individual advantages to be exploited and the limitations of both to be overcome. Furthermore, this solution leads to higher self-consumption and lower annual costs than conventional electric batteries.

Suggested Citation

  • Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2022. "Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities," Renewable Energy, Elsevier, vol. 198(C), pages 1383-1397.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1383-1397
    DOI: 10.1016/j.renene.2022.08.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pensini, Alessandro & Rasmussen, Claus N. & Kempton, Willett, 2014. "Economic analysis of using excess renewable electricity to displace heating fuels," Applied Energy, Elsevier, vol. 131(C), pages 530-543.
    2. Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
    3. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Francesco Mancini & Sabrina Romano & Gianluigi Lo Basso & Jacopo Cimaglia & Livio de Santoli, 2020. "How the Italian Residential Sector Could Contribute to Load Flexibility in Demand Response Activities: A Methodology for Residential Clustering and Developing a Flexibility Strategy," Energies, MDPI, vol. 13(13), pages 1-25, July.
    5. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    6. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2021. "Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050," Renewable Energy, Elsevier, vol. 170(C), pages 1324-1341.
    7. Oprea, Simona-Vasilica & Bâra, Adela, 2021. "Devising a trading mechanism with a joint price adjustment for local electricity markets using blockchain. Insights for policy makers," Energy Policy, Elsevier, vol. 152(C).
    8. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    9. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    10. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    11. Klamka, Jonas & Wolf, André & Ehrlich, Lars G., 2020. "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, Elsevier, vol. 147(P1), pages 2374-2386.
    12. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    13. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    14. Derkenbaeva, Erkinai & Halleck Vega, Solmaria & Hofstede, Gert Jan & van Leeuwen, Eveline, 2022. "Positive energy districts: Mainstreaming energy transition in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).
    16. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Martínez-Lera, S. & Ballester, J. & Martínez-Lera, J., 2013. "Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings," Applied Energy, Elsevier, vol. 106(C), pages 127-142.
    18. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    19. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    20. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    21. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    22. Badami, Marco & Fambri, Gabriele, 2019. "Optimising energy flows and synergies between energy networks," Energy, Elsevier, vol. 173(C), pages 400-412.
    23. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    24. Furat Dawood & GM Shafiullah & Martin Anda, 2020. "Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    25. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    26. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
    27. Hong, Jun & Johnstone, Cameron & Torriti, Jacopo & Leach, Matthew, 2012. "Discrete demand side control performance under dynamic building simulation: A heat pump application," Renewable Energy, Elsevier, vol. 39(1), pages 85-95.
    28. Adam X. Hearn & Raul Castaño-Rosa, 2021. "Towards a Just Energy Transition, Barriers and Opportunities for Positive Energy District Creation in Spain," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    2. Shayan, Mostafa Esmaeili & Najafi, Gholamhassan & Ghobadian, Barat & Gorjian, Shiva & Mamat, Rizalman & Ghazali, Mohd Fairusham, 2022. "Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm," Renewable Energy, Elsevier, vol. 201(P2), pages 179-189.
    3. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    2. Gianluigi Lo Basso & Lorenzo Mario Pastore & Livio de Santoli, 2022. "Power-to-Methane to Integrate Renewable Generation in Urban Energy Districts," Energies, MDPI, vol. 15(23), pages 1-17, December.
    3. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    6. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    10. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    12. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    13. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    14. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    15. Marco Badami & Gabriele Fambri & Salvatore Mancò & Mariapia Martino & Ioannis G. Damousis & Dimitrios Agtzidis & Dimitrios Tzovaras, 2019. "A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    16. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    19. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1383-1397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.