IDEAS home Printed from
   My bibliography  Save this article

Development and commercialization of renewable energy technologies in Canada: An innovation system perspective


  • Jagoda, Kalinga
  • Lonseth, Robert
  • Lonseth, Adam
  • Jackman, Tom


The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented.

Suggested Citation

  • Jagoda, Kalinga & Lonseth, Robert & Lonseth, Adam & Jackman, Tom, 2011. "Development and commercialization of renewable energy technologies in Canada: An innovation system perspective," Renewable Energy, Elsevier, vol. 36(4), pages 1266-1271.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:4:p:1266-1271
    DOI: 10.1016/j.renene.2010.08.022

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Islam, Mazharul & Fartaj, Amir & Ting, David S. -K., 2004. "Current utilization and future prospects of emerging renewable energy applications in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 493-519, December.
    2. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    3. St. Denis, Genevieve & Parker, Paul, 2009. "Community energy planning in Canada: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2088-2095, October.
    4. Maruyama, Yasushi & Nishikido, Makoto & Iida, Tetsunari, 2007. "The rise of community wind power in Japan: Enhanced acceptance through social innovation," Energy Policy, Elsevier, vol. 35(5), pages 2761-2769, May.
    5. Thompson, Shirley & Duggirala, Bhanu, 2009. "The feasibility of renewable energies at an off-grid community in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2740-2745, December.
    6. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    7. Liming, Huang & Haque, Emdad & Barg, Stephan, 2008. "Public policy discourse, planning and measures toward sustainable energy strategies in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 91-115, January.
    8. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    9. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Melin, S., 2010. "A multicriteria approach to evaluate district heating system options," Applied Energy, Elsevier, vol. 87(4), pages 1134-1140, April.
    10. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    11. Shum, Kwok L. & Watanabe, Chihiro, 2009. "An innovation management approach for renewable energy deployment--the case of solar photovoltaic (PV) technology," Energy Policy, Elsevier, vol. 37(9), pages 3535-3544, September.
    12. Hofman, Karen & Li, Xianguo, 2009. "Canada's energy perspectives and policies for sustainable development," Applied Energy, Elsevier, vol. 86(4), pages 407-415, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:enepol:v:108:y:2017:i:c:p:673-683 is not listed on IDEAS
    2. Zhang, Jing & Liang, Xiong-jian, 2012. "Promoting green ICT in China: A framework based on innovation system approaches," Telecommunications Policy, Elsevier, vol. 36(10), pages 997-1013.
    3. Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2011. "Proposal for territorial distribution of the EU 2020 political renewable energy goal," Renewable Energy, Elsevier, vol. 36(8), pages 2067-2077.
    4. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    5. repec:eee:rensus:v:80:y:2017:i:c:p:562-571 is not listed on IDEAS
    6. repec:gam:jeners:v:11:y:2018:i:4:p:874-:d:140231 is not listed on IDEAS
    7. Kostevšek, Anja & Cizelj, Leon & Petek, Janez & Pivec, Aleksandra, 2013. "A novel concept for a renewable network within municipal energy systems," Renewable Energy, Elsevier, vol. 60(C), pages 79-87.
    8. Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
    9. repec:gam:jsusta:v:10:y:2018:i:2:p:448-:d:130958 is not listed on IDEAS
    10. Mijung Jung & Yi-beck Lee & Heesang Lee, 2015. "Classifying and prioritizing the success and failure factors of technology commercialization of public R&D in South Korea: using classification tree analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 877-898, October.
    11. Manzano-Agugliaro, F. & Alcayde, A. & Montoya, F.G. & Zapata-Sierra, A. & Gil, C., 2013. "Scientific production of renewable energies worldwide: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 134-143.

    More about this item


    Solar thermal; Canada; Innovation systems; Policy;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:4:p:1266-1271. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.