IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i11p2992-3000.html

A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems

Author

Listed:
  • Jo, J.H.
  • Otanicar, T.P.

Abstract

Buildings and other engineered structures that form cities are responsible for a significant portion of the global and local impacts of climate change. Consequently, the installation of building integrated renewable energy sources such as photovoltaic or solar thermal systems on building rooftops is being widely investigated. Although the advantages for individual buildings have been studied, as yet there is little understanding of the potential benefits of urban scale implementation of such systems. Here we report the development of a new methodology for assessing the potential capacity and benefits of installing rooftop photovoltaic systems in an urbanized area. Object oriented image analysis and geographical information systems are combined with remote sensing image data to quantify the rooftop area available for solar energy applications and a renewable energy computer simulation is included to predict the potential benefits of urban scale photovoltaic system implementation. The new methodology predicts energy generation potential that can be utilized to meet Arizona’s Renewable Portfolio Standard 2025 renewable energy generation requirements.

Suggested Citation

  • Jo, J.H. & Otanicar, T.P., 2011. "A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems," Renewable Energy, Elsevier, vol. 36(11), pages 2992-3000.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2992-3000
    DOI: 10.1016/j.renene.2011.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    2. Oliver, M. & Jackson, T., 2001. "Energy and economic evaluation of building-integrated photovoltaics," Energy, Elsevier, vol. 26(4), pages 431-439.
    3. Omer, S.A. & Wilson, R. & Riffat, S.B., 2003. "Monitoring results of two examples of building integrated PV (BIPV) systems in the UK," Renewable Energy, Elsevier, vol. 28(9), pages 1387-1399.
    4. Cory, Karlynn S. & Swezey, Blair G., 2007. "Renewable Portfolio Standards in the States: Balancing Goals and Rules," The Electricity Journal, Elsevier, vol. 20(4), pages 21-32, May.
    5. Keoleian, Gregory A. & Lewis, Geoffrey McD., 2003. "Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US," Renewable Energy, Elsevier, vol. 28(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    2. Hannes Koch & Stefan Lechner & Sebastian Erdmann & Martin Hofmann, 2022. "Assessing the Potential of Rooftop Photovoltaics by Processing High-Resolution Irradiation Data, as Applied to Giessen, Germany," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    4. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    5. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    6. Schallenberg-Rodríguez, Julieta, 2013. "Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 219-239.
    7. De Schepper, Ellen & Van Passel, Steven & Manca, Jean & Thewys, Theo, 2012. "Combining photovoltaics and sound barriers – A feasibility study," Renewable Energy, Elsevier, vol. 46(C), pages 297-303.
    8. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    9. Jo, J.H. & Loomis, D.G. & Aldeman, M.R., 2013. "Optimum penetration of utility-scale grid-connected solar photovoltaic systems in Illinois," Renewable Energy, Elsevier, vol. 60(C), pages 20-26.
    10. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Myeongchan Oh & Hyeong-Dong Park, 2019. "Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University," Energies, MDPI, vol. 12(17), pages 1-17, August.
    12. Sarawut Ninsawat & Mohammad Dalower Hossain, 2016. "Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV)," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    13. Babak Ranjgar & Alessandro Niccolai, 2023. "Large-Scale Rooftop Solar Photovoltaic Power Production Potential Assessment: A Case Study for Tehran Metropolitan Area, Iran," Energies, MDPI, vol. 16(20), pages 1-14, October.
    14. Firozjaei, Mohammad Karimi & Nematollahi, Omid & Mijani, Naeim & Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Toomanian, Ara, 2019. "An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning," Renewable Energy, Elsevier, vol. 136(C), pages 1130-1146.
    15. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    16. Sánchez-Lozano, Juan M. & Henggeler Antunes, Carlos & García-Cascales, M. Socorro & Dias, Luis C., 2014. "GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain," Renewable Energy, Elsevier, vol. 66(C), pages 478-494.
    17. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, Poh Khai & Mithraratne, Nalanie, 2014. "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 736-745.
    2. Doukas, Haris & Patlitzianas, Konstantinos D. & Psarras, John, 2006. "Supporting sustainable electricity technologies in Greece using MCDM," Resources Policy, Elsevier, vol. 31(2), pages 129-136, June.
    3. James Buthman, 2015. "Institutionalizing renewable electricity: the long-term potential for policy learning," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 526-536, December.
    4. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    5. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    6. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    7. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    8. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    9. Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
    10. Mah, Daphne Ngar-yin & Cheung, Darren Man-wai & Leung, Michael K.H. & Wang, Maggie Yachao & Wong, Mandy Wai-ming & Lo, Kevin & Cheung, Altair T.F., 2021. "Policy mixes and the policy learning process of energy transitions: Insights from the feed-in tariff policy and urban community solar in Hong Kong," Energy Policy, Elsevier, vol. 157(C).
    11. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    12. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    14. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    15. De Cian, Enrica & Wing, Ian Sue, "undated". "Global Energy Demand in a Warming Climate," EIA: Climate Change: Economic Impacts and Adaptation 232222, Fondazione Eni Enrico Mattei (FEEM).
    16. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    17. Biegel, Benjamin & Westenholz, Mikkel & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Integration of flexible consumers in the ancillary service markets," Energy, Elsevier, vol. 67(C), pages 479-489.
    18. Chul-sung Lee & Hyo-mun Lee & Min-joo Choi & Jong-ho Yoon, 2019. "Performance Evaluation and Prediction of BIPV Systems under Partial Shading Conditions Using Normalized Efficiency," Energies, MDPI, vol. 12(19), pages 1-16, October.
    19. Sivaraman, Deepak & Keoleian, Gregory A., 2010. "Photovoltaic (PV) electricity: Comparative analyses of CO2 abatement at different fuel mix scales in the US," Energy Policy, Elsevier, vol. 38(10), pages 5708-5718, October.
    20. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2992-3000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.