IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp185-217.html
   My bibliography  Save this article

Performance of compressed air energy storage system under parallel operation mode of pneumatic motor

Author

Listed:
  • Xu, Yonghong
  • Zhang, Hongguang
  • Yang, Fubin
  • Tong, Liang
  • Yan, Dong
  • Yang, Yifan
  • Wang, Yan
  • Wu, Yuting

Abstract

Compressed air energy storage is a promising technology with the advantages of zero pollution, long lifetime, low maintenance, and minimal environmental impact. However, compressed air energy storage has some disadvantages, such as low efficiency and low energy density. A parallel operation mode of pneumatic motor is proposed in this study to improve the power performance, energy conversion efficiency, and economy of compressed air energy storage system. First, the test bench of compressed air energy storage system is established. Then, the influence of key parameters, such as current, rotating speed, and regulated pressure, on the output performance of compressed air energy storage system is investigated in this study. Afterward, the interaction among volume flow rate, rotating speed, torque, output power of pneumatic motor, and the current, voltage, and output power of the generator, as well their influence on one another, are discussed. Finally, the output performances of compressed air energy storage system when the pneumatic motor works alone and in parallel are compared and analyzed. The experimental results show that the power performance, energy conversion efficiency, and economy of compressed air energy storage system can be improved when the pneumatic motor works in parallel operation mode. The minimum compressed air consumption rate is 0.1369 g/J, the maximum power output is 818 W, the maximum efficiency of the generator is 88.7%, and the maximum efficiency of pneumatic motor is 6.5% when the pneumatic motor works in parallel operation mode.

Suggested Citation

  • Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2022. "Performance of compressed air energy storage system under parallel operation mode of pneumatic motor," Renewable Energy, Elsevier, vol. 200(C), pages 185-217.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:185-217
    DOI: 10.1016/j.renene.2022.09.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
    2. Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
    3. Li, Jian & Yang, Fubin & Zhang, Hongguang & Wu, Zhong & Tian, Yaming & Hou, Xiaochen & Xu, Yonghong & Ren, Jing, 2020. "Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design," Energy, Elsevier, vol. 195(C).
    4. Wang, Xing & Zhang, Xuehui & Zuo, Zhitao & Zhu, Yangli & Li, Wen & Chen, Haisheng & Ding, Yulong, 2021. "Effect of chamber roughness and local smoothing on performance of a CAES axial turbine," Renewable Energy, Elsevier, vol. 170(C), pages 500-516.
    5. Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
    6. Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2021. "Experimental investigation of pneumatic motor for transport application," Renewable Energy, Elsevier, vol. 179(C), pages 517-527.
    7. Hüttermann, Lars & Span, Roland, 2019. "Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems," Energy, Elsevier, vol. 174(C), pages 236-245.
    8. Sriyakul, Thanaporn & Jermsittiparsert, Kittisak, 2021. "Risk-controlled economic performance of compressed air energy storage and wind generation in day-ahead, intraday and balancing markets," Renewable Energy, Elsevier, vol. 165(P1), pages 182-193.
    9. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Gluesenkamp, Kyle R. & Abdelaziz, Omar & Jackson, Roderick K. & Daniel, Claus & Graham, Samuel & Momen, Ayyoub M., 2016. "Thermal analysis of near-isothermal compressed gas energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 948-960.
    10. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    11. Tessier, Michael J. & Floros, Michael C. & Bouzidi, Laziz & Narine, Suresh S., 2016. "Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials," Energy, Elsevier, vol. 106(C), pages 528-534.
    12. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    13. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    14. Aiqin Sun & Jidai Wang & Guangqing Chen & Jihong Wang & Shihong Miao & Dan Wang & Zhiwei Wang & Lan Ma, 2020. "Study on Effects of Inlet Resistance on the Efficiency of Scroll Expander in Micro-Compressed Air Energy Storage System," Energies, MDPI, vol. 13(18), pages 1-12, September.
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Chen, Shang & Arabkoohsar, Ahmad & Zhu, Tong & Nielsen, Mads Pagh, 2020. "Development of a micro-compressed air energy storage system model based on experiments," Energy, Elsevier, vol. 197(C).
    17. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    18. Liu, Qingshan & Liu, Yingwen & Liu, Hongjiang & He, Zhilong & Xue, Xiaodai, 2022. "Comprehensive assessment and performance enhancement of compressed air energy storage: thermodynamic effect of ambient temperature," Renewable Energy, Elsevier, vol. 196(C), pages 84-98.
    19. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    3. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
    5. Hailong Yang & Yonghong Xu & Xiaohui Zhong & Jiajun Zeng & Fubin Yang, 2024. "Experimental Investigation on the Performance of the Scroll Expander under Various Driving Cycles," Energies, MDPI, vol. 17(2), pages 1-24, January.
    6. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    7. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    8. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    9. Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
    10. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    11. Yu, Qihui & Wang, Qiancheng & Tan, Xin & Li, XiaoFei, 2021. "Water spray heat transfer gas compression for compressed air energy system," Renewable Energy, Elsevier, vol. 179(C), pages 1106-1121.
    12. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    13. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    14. Paul Byrne & Pascal Lalanne, 2021. "Parametric Study of a Long-Duration Energy Storage Using Pumped-Hydro and Carbon Dioxide Transcritical Cycles," Energies, MDPI, vol. 14(15), pages 1-13, July.
    15. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    16. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    17. Guo, Chaobin & Pan, Lehua & Zhang, Keni & Oldenburg, Curtis M. & Li, Cai & Li, Yi, 2016. "Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant," Applied Energy, Elsevier, vol. 181(C), pages 342-356.
    18. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    19. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    20. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:185-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.