IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp859-869.html
   My bibliography  Save this article

The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey

Author

Listed:
  • Sahin, Habip
  • Esen, Hikmet

Abstract

The aim of this study is to analyze the use of renewable energy resources in electricity generation and its impacts on greenhouse gas emissions mitigation in terms of emission intensity in Turkey. Thus, annual development of Turkey's electricity generation by renewable energy resources and its share in general total were examined. Annually, total greenhouse gas emissions from electricity production are determined and divided by total electricity production so that the emission intensity from electricity production is found in gCO2e/kWh. The effect of each source used in electricity generation on the emission intensity is demonstrated. Although there are volatilities in some years, it is revealed that the emission intensity, which was 563 gCO2e/kWh in 2008, decreased to 437 gCO2e/kWh in 2020 with an annual average decrease of 2.1%. These emission data belonging to Turkey are compared with the values of the European Union since it is a candidate country. As a result, it has been suggested that Turkey, which has a large renewable energy potential, should use this potential more effectively in order to further reduce its emissions from electricity generation.

Suggested Citation

  • Sahin, Habip & Esen, Hikmet, 2022. "The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey," Renewable Energy, Elsevier, vol. 192(C), pages 859-869.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:859-869
    DOI: 10.1016/j.renene.2022.03.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Ari, Izzet & Aydinalp Koksal, Merih, 2011. "Carbon dioxide emission from the Turkish electricity sector and its mitigation options," Energy Policy, Elsevier, vol. 39(10), pages 6120-6135, October.
    3. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    4. Ozcan, Mustafa, 2018. "The role of renewables in increasing Turkey's self-sufficiency in electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2629-2639.
    5. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    6. Khan, Muhammad Tariq Iqbal & Ali, Qamar & Ashfaq, Muhammad, 2018. "The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan," Renewable Energy, Elsevier, vol. 118(C), pages 437-451.
    7. Farhani, Sahbi & Shahbaz, Muhammad, 2014. "What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 80-90.
    8. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    9. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    10. Akbostancı, Elif & Tunç, Gül İpek & Türüt-Aşık, Serap, 2018. "Drivers of fuel based carbon dioxide emissions: The case of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2599-2608.
    11. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    12. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    13. Ari, Izzet & Yikmaz, Riza Fikret, 2019. "The role of renewable energy in achieving Turkey's INDC," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 244-251.
    14. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    15. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    16. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    2. Fahad Saleh Al-Ismail & Md Shafiul Alam & Md Shafiullah & Md Ismail Hossain & Syed Masiur Rahman, 2023. "Impacts of Renewable Energy Generation on Greenhouse Gas Emissions in Saudi Arabia: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    3. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    4. Witold Chmielarz & Marek Zborowski & Mesut Atasever & Jin Xuetao & Justyna Szpakowska, 2023. "The Role of ICT in Creating the Conscious Development of Green Energy Applications in Times of Crisis: Comparison of Poland, Türkiye and People's Republic of China," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 492-519.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    2. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    3. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    4. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    5. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    6. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    8. Ari, Izzet & Yikmaz, Riza Fikret, 2019. "The role of renewable energy in achieving Turkey's INDC," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 244-251.
    9. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    10. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    11. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    12. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    13. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    14. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    15. Zhong-Hua Tian & Ze-Liang Yang, 2016. "Scenarios of Carbon Emissions from the Power Sector in Guangdong Province," Sustainability, MDPI, vol. 8(9), pages 1-14, August.
    16. Anwar, Ahsan & Siddique, Muhammad & Eyup Dogan, & Sharif, Arshian, 2021. "The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression," Renewable Energy, Elsevier, vol. 164(C), pages 956-967.
    17. Simplice A. Asongu & Chimere O. Iheonu & Kingsley O. Odo, 2019. "The Conditional Relationship between Renewable Energy and Environmental Quality in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 19/074, African Governance and Development Institute..
    18. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
    19. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    20. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:859-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.