IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp756-766.html
   My bibliography  Save this article

A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion

Author

Listed:
  • Liu, Jin
  • Smith, Stephen R.

Abstract

Anaerobic digestion (AD) is a long-established method for treating wastewater sludge and has been extensively researched, but there remains a lack of generic or practical modelling tools to guide operators and maximise the energy output. Detailed kinetic models have been developed, but are too complex as practical tools for industrial level application. A multi-level model of biogas yield (BY) was therefore developed based on operational data from 72 full-scale sites in the UK showing a wide range of AD performance. The model focused on the controllable operational parameters that are currently monitored at full-scale, including: temperature, hydraulic retention time and dry solids content in the feed sludge. The model effectively described performance variations in BY of full-scale processes, and provides a practical management tool to aid decision support to improve AD efficiency and net energy balance.

Suggested Citation

  • Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:756-766
    DOI: 10.1016/j.renene.2020.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030923X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nixon, J.D., 2016. "Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach," Energy, Elsevier, vol. 114(C), pages 814-822.
    2. Ciobanu Dumitru & Vasilescu Maria, 2013. "Advantages and Disadvantages of Using Neural Networks for Predictions," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 444-449, May.
    3. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2014. "A review of simple to scientific models for anaerobic digestion," Renewable Energy, Elsevier, vol. 71(C), pages 701-714.
    4. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abd Manan, Zainuddin, 2021. "Optimization of energy-water-waste nexus at district level: A techno-economic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Soufia Mohammadi & Pilar Monsalvete Álvarez de Uribarri & Ursula Eicker, 2021. "Decentral Energy Generation Potential of Anaerobic Digestion of Black Water and Kitchen Refuse for Eco-District Planning," Energies, MDPI, vol. 14(10), pages 1-14, May.
    3. Campo, Giuseppe & Cerutti, Alberto & Zanetti, Mariachiara & De Ceglia, Margherita & Scibilia, Gerardo & Ruffino, Barbara, 2023. "A modelling approach for the assessment of energy recovery and impact on the water line of sludge pre-treatments," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Heng & Chen, Zheng & Fu, Dun & Wang, Yuanpeng & Zheng, Yanmei & Li, Qingbiao, 2020. "Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production," Renewable Energy, Elsevier, vol. 146(C), pages 2330-2336.
    2. Morero, Betzabet & Montagna, Agustín F. & Campanella, Enrique A. & Cafaro, Diego C., 2020. "Optimal process design for integrated municipal waste management with energy recovery in Argentina," Renewable Energy, Elsevier, vol. 146(C), pages 2626-2636.
    3. Hassan, Muhammad & Umar, Muhammad & Ding, Weimin & Mehryar, Esmaeil & Zhao, Chao, 2017. "Methane enhancement through co-digestion of chicken manure and oxidative cleaved wheat straw: Stability performance and kinetic modeling perspectives," Energy, Elsevier, vol. 141(C), pages 2314-2320.
    4. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    5. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    6. Marco De Sanctis & Valerio Guido Altieri & Emanuele Barca & Luigi di Bitonto & Francesco Tedeschi & Claudio Di Iaconi, 2024. "Comparison Among Thermal Pre-Treatments’ Effectiveness in Increasing Anaerobic Digestibility of Organic Fraction in Municipal Solid Wastes," Energies, MDPI, vol. 17(24), pages 1-13, December.
    7. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    8. Mahdi Sedighkia & Asghar Abdoli, 2023. "Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT-reservoir operation optimization method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 834-854, January.
    9. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Sha, Hao & Cao, Shengxian & Zhao, Bo & Dong, Zheng & Wang, Gong & Duan, Jie, 2024. "Effect of alkaline deep eutectic solvents pretreatment on CH4 yield from anaerobic digestion of corn stover," Energy, Elsevier, vol. 302(C).
    11. Mahdi Sedighkia & Asghar Abdoli, 2024. "A Simulation–Optimization System to Assess Dam Construction with a Focus on Environmental Degradation at Downstream," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2489-2509, May.
    12. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    13. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    14. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    15. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Fuping Liu & Ying Liu & Chen Yang & Ruixun Lai, 2022. "A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4785-4797, September.
    17. Ciro Vasmara & Stefania Galletti & Stefano Cianchetta & Enrico Ceotto, 2025. "Hydrogen Production from Renewable and Non-Renewable Sources with a Focus on Bio-Hydrogen from Giant reed ( Arundo donax L.), a Review," Energies, MDPI, vol. 18(3), pages 1-29, February.
    18. Willeghems, Gwen & Buysse, Jeroen, 2016. "Changing old habits: The case of feeding patterns in anaerobic digesters," Renewable Energy, Elsevier, vol. 92(C), pages 212-221.
    19. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    20. Shaghayegh Rahnama & Adriana Cortez & Andres Monzon, 2024. "Navigating Passenger Satisfaction: A Structural Equation Modeling–Artificial Neural Network Approach to Intercity Bus Services," Sustainability, MDPI, vol. 16(11), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:756-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.