IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2826-d1667137.html
   My bibliography  Save this article

Recent Developments, Challenges, and Environmental Benefits of Using Hermetia illucens for Bioenergy Production Within a Circular Economy Approach

Author

Listed:
  • Luana Bataglia

    (Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy)

  • Antonio Conversano

    (Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy)

  • Daniele Di Bona

    (LEAP s.c. a r.l., Via Nino Bixio 27c, 29121 Piacenza, Italy)

  • Davide Sogni

    (LEAP s.c. a r.l., Via Nino Bixio 27c, 29121 Piacenza, Italy)

  • Diego Voccia

    (Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy)

  • Emanuele Mazzoni

    (Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
    Centro di Ricerca BioDNA Biodiversità e DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy)

  • Lucrezia Lamastra

    (Department of Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
    Centro di Ricerca BioDNA Biodiversità e DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy)

Abstract

This study proposes a novel integrated biorefinery approach that combines Hermetia illucens (Black Soldier Fly) larvae treatment, anaerobic digestion (AD), and hydrothermal carbonization (HTC) to enhance the valorisation of fat-rich food residues. The process was designed to improve biogas yields while mitigating the inhibitory effects of lipid accumulation in AD systems. Results from larval bioconversion showed effective fat removal and a promising potential for protein and biomass valorisation. Downstream integration with AD and HTC enabled thermal self-sufficiency, enhanced energy recovery, and improved digestate dewaterability. Additionally, HTC process water recirculation to the AD unit was evaluated, considering its acidic nature and impact on biomethane production. A thermally integrated process flow was proposed, enabling efficient heat exchange and reduced external energy input. The overall system allows for multi-product recovery—including biogas, hydrochar, and larval biomass—offering a sustainable pathway for circular bioeconomy applications. This study illustrates the feasibility of a synergetic process chain that maximises energy recovery and resource efficiency from food industry waste streams.

Suggested Citation

  • Luana Bataglia & Antonio Conversano & Daniele Di Bona & Davide Sogni & Diego Voccia & Emanuele Mazzoni & Lucrezia Lamastra, 2025. "Recent Developments, Challenges, and Environmental Benefits of Using Hermetia illucens for Bioenergy Production Within a Circular Economy Approach," Energies, MDPI, vol. 18(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2826-:d:1667137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Junyu & Liu, Xiangjie & Zhang, Xin & Deng, Bo & Xu, Chao & Zhang, Congcong & Yuan, Qiaoxia, 2023. "Experimental study on black soldier fly (Hermetia illucens L.) larvae hydrothermal liquefaction in methanol-water Co-solvent: Bio-oil yields and properties," Renewable Energy, Elsevier, vol. 218(C).
    2. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    3. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    4. Zheng, Longyu & Li, Qing & Zhang, Jibin & Yu, Ziniu, 2012. "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production," Renewable Energy, Elsevier, vol. 41(C), pages 75-79.
    5. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
    6. Fabio A. Madau & Brunella Arru & Roberto Furesi & Pietro Pulina, 2020. "Insect Farming for Feed and Food Production from a Circular Business Model Perspective," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    7. Win, Shwe S. & Ebner, Jacqueline H. & Brownell, Sarah A. & Pagano, Susan S. & Cruz-Diloné, Pedro & Trabold, Thomas A., 2018. "Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery," Renewable Energy, Elsevier, vol. 127(C), pages 705-712.
    8. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2014. "A review of simple to scientific models for anaerobic digestion," Renewable Energy, Elsevier, vol. 71(C), pages 701-714.
    9. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    10. Surendra, K.C. & Olivier, Robert & Tomberlin, Jeffery K. & Jha, Rajesh & Khanal, Samir Kumar, 2016. "Bioconversion of organic wastes into biodiesel and animal feed via insect farming," Renewable Energy, Elsevier, vol. 98(C), pages 197-202.
    11. Chaudhary, Anu & Rathour, Ranju Kumari & Solanki, Preeti & Mehta Kakkar, Preeti & Pathania, Shruti & Walia, Abhishek & Baadhe, Rama Raju & Bhatia, Ravi Kant, 2025. "Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap," Renewable Energy, Elsevier, vol. 244(C).
    12. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    13. Talal Yusaf & Mohd Kamal Kamarulzaman & Abdullah Adam & Sakinah Hisham & Devarajan Ramasamy & Kumaran Kadirgama & Mahendran Samykano & Sivaraos Subramaniam, 2022. "Physical-Chemical Properties Modification of Hermetia Illucens Larvae Oil and Diesel Fuel for the Internal Combustion Engines Application," Energies, MDPI, vol. 15(21), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahida Anusha Siddiqui & Özge Süfer & Gülşah Çalışkan Koç & Hanif Lutuf & Teguh Rahayu & Roberto Castro-Muñoz & Ito Fernando, 2025. "Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment – A comprehensive review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 9673-9741, May.
    2. Dave Mangindaan & Emil Robert Kaburuan & Bayu Meindrawan, 2022. "Black Soldier Fly Larvae ( Hermetia illucens ) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    3. Talal Yusaf & Mohd Kamal Kamarulzaman & Abdullah Adam & Sakinah Hisham & Devarajan Ramasamy & Kumaran Kadirgama & Mahendran Samykano & Sivaraos Subramaniam, 2022. "Physical-Chemical Properties Modification of Hermetia Illucens Larvae Oil and Diesel Fuel for the Internal Combustion Engines Application," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    5. Chung Yiin Wong & Muhammad Naeim Mohd Aris & Hanita Daud & Man Kee Lam & Ching Seong Yong & Hadura Abu Hasan & Siewhui Chong & Pau Loke Show & Oetami Dwi Hajoeningtijas & Yeek Chia Ho & Pei Sean Goh &, 2020. "In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens : Statistical Augmentation of Larval Lipid Content," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    6. Antonio Franco & Carmen Scieuzo & Rosanna Salvia & Anna Maria Petrone & Elena Tafi & Antonio Moretta & Eric Schmitt & Patrizia Falabella, 2021. "Lipids from Hermetia illucens , an Innovative and Sustainable Source," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    7. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
    8. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    9. Costanza Jucker & Daniela Lupi & Christopher Douglas Moore & Maria Giovanna Leonardi & Sara Savoldelli, 2020. "Nutrient Recapture from Insect Farm Waste: Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae)," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    10. Zhu, Junyu & Liu, Xiangjie & Zhang, Xin & Deng, Bo & Xu, Chao & Zhang, Congcong & Yuan, Qiaoxia, 2023. "Experimental study on black soldier fly (Hermetia illucens L.) larvae hydrothermal liquefaction in methanol-water Co-solvent: Bio-oil yields and properties," Renewable Energy, Elsevier, vol. 218(C).
    11. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    12. Win, Shwe S. & Ebner, Jacqueline H. & Brownell, Sarah A. & Pagano, Susan S. & Cruz-Diloné, Pedro & Trabold, Thomas A., 2018. "Anaerobic digestion of black solider fly larvae (BSFL) biomass as part of an integrated biorefinery," Renewable Energy, Elsevier, vol. 127(C), pages 705-712.
    13. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    14. Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
    15. Pang, Wancheng & Hou, Dejia & Ke, Jingwen & Chen, Jiangshan & Holtzapple, Mark T. & Tomberlin, Jeffery K. & Chen, Huanchun & Zhang, Jibin & Li, Qing, 2020. "Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly," Renewable Energy, Elsevier, vol. 149(C), pages 1174-1181.
    16. Kofi Armah Boakye-Yiadom & Alessio Ilari & Daniele Duca, 2022. "Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly ( Hermetia illucens L.)," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    17. Feng, Weiliang & Xiong, Huan & Wang, Weiguo & Duan, Xiaoling & Yang, Tong & Wu, Cheng & Yang, Fang & Wang, Teilin & Wang, Cunwen, 2020. "A facile and mild one-pot process for direct extraction of lipids from wet energy insects of black soldier fly larvae," Renewable Energy, Elsevier, vol. 147(P1), pages 584-593.
    18. Wu, Sheng-qing & Sun, Ting-ting & Cai, Zi-zhe & Shen, Juan & Yang, Wen-zhe & Zhao, Zhi-min & Yang, De-po, 2020. "Biolubricant base stock with improved low temperature performance: Ester complex production using housefly (Musca domestica L.) larval lipid," Renewable Energy, Elsevier, vol. 162(C), pages 1940-1951.
    19. Caroline Jennings Saul & Heiko Gebauer, 2018. "Digital Transformation as an Enabler for Advanced Services in the Sanitation Sector," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    20. Roffeis, Martin & Fitches, Elaine C. & Wakefield, Maureen E. & Almeida, Joana & Alves Valada, Tatiana R. & Devic, Emilie & Koné, N’Golopé & Kenis, Marc & Nacambo, Saidou & Koko, Gabriel K.D. & Mathijs, 2020. "Ex-ante life cycle impact assessment of insect based feed production in West Africa," Agricultural Systems, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2826-:d:1667137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.