IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp264-282.html
   My bibliography  Save this article

Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation

Author

Listed:
  • Trad, Zaineb
  • Fontaine, Jean-Pierre
  • Larroche, Christian
  • Vial, Christophe

Abstract

Hydrogen production by dark fermentation (DF) from wastewater, food waste, and agro-industrial waste combines the advantages to be renewable, sustainable and environmentally friendly. But this attractive process involves a three-phase gas-liquid-solid system highly sensitive to mixing conditions. However, mixing is usually disregarded in the conventional strategies for enhancing biohydrogen productivity, even though H2 production can be doubled, e.g. versus of reactor design (0.6–1.5 mol H2/mol hexose). The objective of this review paper is, therefore, to highlight the key effects of mixing on biohydrogen production among the abiotic parameters of DF. First, the pros and cons of the different modes of mixing in anaerobic digesters are described. Then, the influence of mixing on DF is discussed using recent data from the literature and theoretical analysis, focusing on the multiphase and multiscale aspects of DF. The methods and tools available to quantify experimentally the role of mixing both at the local and global scales are summarized. The 0-D to 3-D strategies able to implement mixing in fermentation modeling and scale-up procedures are examined. Finally, the perspectives in terms of process intensification and scale-up tools using mixing optimization are discussed with the issues that are still to be solved.

Suggested Citation

  • Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:264-282
    DOI: 10.1016/j.renene.2016.03.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116302786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kowalczyk, Alexandra & Harnisch, Eva & Schwede, Sebastian & Gerber, Mandy & Span, Roland, 2013. "Different mixing modes for biogas plants using energy crops," Applied Energy, Elsevier, vol. 112(C), pages 465-472.
    2. Park, Jeong-Hoon & Lee, Sang-Hoon & Ju, Hyun-Jun & Kim, Sang-Hyoun & Yoon, Jeong-Jun & Park, Hee-Deung, 2016. "Failure of biohydrogen production by low levels of substrate and lactic acid accumulation," Renewable Energy, Elsevier, vol. 86(C), pages 889-894.
    3. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    4. Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
    5. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    6. Zhang, Yan & Zhang, Fang & Chen, Man & Chu, Pei-Na & Ding, Jing & Zeng, Raymond J., 2013. "Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation," Applied Energy, Elsevier, vol. 109(C), pages 213-219.
    7. Yu, Liang & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Dillon, Robert & Li, Xiujin & Chen, Shulin, 2013. "Multiphase modeling of settling and suspension in anaerobic digester," Applied Energy, Elsevier, vol. 111(C), pages 28-39.
    8. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2014. "A review of simple to scientific models for anaerobic digestion," Renewable Energy, Elsevier, vol. 71(C), pages 701-714.
    9. Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "Energy recovery from wastewaters with high-rate anaerobic digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 704-741.
    10. Leite, Wanderli Rogério Moreira & Gottardo, Marco & Pavan, Paolo & Belli Filho, Paulo & Bolzonella, David, 2016. "Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge," Renewable Energy, Elsevier, vol. 86(C), pages 1324-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Pei Guo & Jiri Zhou & Rongjiang Ma & Nanyang Yu & Yanping Yuan, 2019. "Biogas Production and Heat Transfer Performance of a Multiphase Flow Digester," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    4. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    5. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    3. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    4. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    5. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
    6. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    7. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    9. Vojtěch Zejda & Vítězslav Máša & Šárka Václavková & Pavel Skryja, 2020. "A Novel Check-List Strategy to Evaluate the Potential of Operational Improvements in Wastewater Treatment Plants," Energies, MDPI, vol. 13(19), pages 1-21, September.
    10. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    11. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    12. Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
    13. Haorui Zhang & Jiaolin Li & Quanguo Zhang & Shengnan Zhu & Shuai Yang & Zhiping Zhang, 2020. "Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation," Sustainability, MDPI, vol. 12(7), pages 1-8, March.
    14. Palomo-Briones, Rodolfo & Razo-Flores, Elías & Bernet, Nicolas & Trably, Eric, 2017. "Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control," Applied Energy, Elsevier, vol. 198(C), pages 77-87.
    15. Buta Singh & Narinder Singh & Zsolt Čonka & Michal Kolcun & Zoltán Siménfalvi & Zsolt Péter & Zoltán Szamosi, 2021. "Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    16. Vinardell, S. & Astals, S. & Peces, M. & Cardete, M.A. & Fernández, I. & Mata-Alvarez, J. & Dosta, J., 2020. "Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Willeghems, Gwen & Buysse, Jeroen, 2016. "Changing old habits: The case of feeding patterns in anaerobic digesters," Renewable Energy, Elsevier, vol. 92(C), pages 212-221.
    18. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    19. Schneider, Nico & Gerber, Mandy, 2020. "Rheological properties of digestate from agricultural biogas plants: An overview of measurement techniques and influencing factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Sivagurunathan, Periyasamy & Kumar, Gopalakrishnan & Mudhoo, Ackmez & Rene, Eldon R. & Saratale, Ganesh Dattatraya & Kobayashi, Takuro & Xu, Kaiqin & Kim, Sang-Hyoun & Kim, Dong-Hoon, 2017. "Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 28-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:264-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.