IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2330-2336.html
   My bibliography  Save this article

Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production

Author

Listed:
  • Li, Heng
  • Chen, Zheng
  • Fu, Dun
  • Wang, Yuanpeng
  • Zheng, Yanmei
  • Li, Qingbiao

Abstract

A mathematical model is developed in this study to simulate the performance and fates of carbon (C), nitrogen (N) and phosphorus (P) in wet and high-total solid (TS) anaerobic digestion (AD) processes. The “Anaerobic Digestion Model No. 1” (ADM1) is improved by adding inorganic components and integrating the inhibition of high-TS and liquid-solid processes. The model's outputs are validated with experimental results obtained from a semi-continuous reactor, with pig manure as a single substrate at wet and high-TS operation stages. The predicted C (methane production and volatile fatty acid concentrations), N (ammonia nitrogen concentrations) and P (phosphorus concentrations) fates are reasonable and exhibit good accuracy. The model is subsequently applied to simulate CH4 production under different hydraulic retention times and organic loading rates. The simulation analysis demonstrates that pret-reatments, such as promoting the hydrolysis and biodegradility of substrate and immobilising strains, are necessary in the high-TS AD process for pig manure to enhance performance. This study provides guidance for the future optimisation of process and nutrient recycling in AD.

Suggested Citation

  • Li, Heng & Chen, Zheng & Fu, Dun & Wang, Yuanpeng & Zheng, Yanmei & Li, Qingbiao, 2020. "Improved ADM1 for modelling C, N, P fates in anaerobic digestion process of pig manure and optimization approaches to biogas production," Renewable Energy, Elsevier, vol. 146(C), pages 2330-2336.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2330-2336
    DOI: 10.1016/j.renene.2019.08.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931273X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    2. Bułkowska, K. & Białobrzewski, I. & Klimiuk, E. & Pokój, T., 2018. "Kinetic parameters of volatile fatty acids uptake in the ADM1 as key factors for modeling co-digestion of silages with pig manure, thin stillage and glycerine phase," Renewable Energy, Elsevier, vol. 126(C), pages 163-176.
    3. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    4. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2014. "A review of simple to scientific models for anaerobic digestion," Renewable Energy, Elsevier, vol. 71(C), pages 701-714.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Postawa, Karol & Szczygieł, Jerzy & Kułażyński, Marek, 2020. "A comprehensive comparison of ODE solvers for biochemical problems," Renewable Energy, Elsevier, vol. 156(C), pages 624-633.
    2. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    3. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    2. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    3. Huang, Xianlei & Wang, Shu & Shi, Zuliang & Fang, Linna & Yin, Changbin, 2022. "Challenges and strategies for biogas production in the circular agricultural waste utilization model: A case study in rural China," Energy, Elsevier, vol. 241(C).
    4. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    5. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    6. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    7. Chen, Bin & Chen, Shaoqing, 2013. "Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system," Energy Policy, Elsevier, vol. 62(C), pages 707-716.
    8. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    9. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    10. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    11. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    13. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    14. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    15. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    16. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    17. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    18. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    19. Massimiliano Boccarossa & Martina Di Addario & Adele Folino & Fabio Tatàno, 2021. "Scenarios of Bioenergy Recovery from Organic Fraction of Residual Municipal Waste in the Marche Region (Italy)," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    20. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.

    More about this item

    Keywords

    Anaerobic digestion; Methane; ADM1; Nutrient; Modelling; Optimisation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2330-2336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.