IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03277-z.html
   My bibliography  Save this article

A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling

Author

Listed:
  • Fuping Liu

    (North China University of Water Resources and Electric Power)

  • Ying Liu

    (North China University of Water Resources and Electric Power)

  • Chen Yang

    (North China University of Water Resources and Electric Power)

  • Ruixun Lai

    (Yellow River Institute of Hydraulic Research)

Abstract

Precipitation is the most basic part of the water cycle process. Aiming at the problem of low prediction accuracy caused by the nonlinear and unstable characteristics of the precipitation series, a new precipitation prediction method based on the CEEMDAN-IWOA-BP coupling model is proposed. This method first uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the original precipitation sequence, and obtains a series of intrinsic mode function (IMF) and residual terms (Res) as inherent potential influencing factors, innovatively introduce TENT chaotic mapping and roulette algorithm to improve the Whale Optimization Algorithm (WOA), use IMFs and Res as the input of the Improve Whale Optimization Algorithm (IWOA) to optimize Back Propagation (BP) neural network prediction model, and finally superimpose the predicted values as ultima result.The present method was applied to predict the annual precipitation from 1958 to 2017 in Sichuan Province. Compared with the prediction results of other models, the CEEMDAN-IWOA-BP coupled model has significantly improved prediction accuracy than the single model, and the prediction error index is smaller than the BP neural network optimized by the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms, moreover, the optimization accuracy and solving ability are significantly enhanced compared with the unimproved WOA. It can extract the information of complex precipitation series more effectively, and then provide a new method for nonlinear and unstable precipitation time series prediction.

Suggested Citation

  • Fuping Liu & Ying Liu & Chen Yang & Ruixun Lai, 2022. "A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4785-4797, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03277-z
    DOI: 10.1007/s11269-022-03277-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03277-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03277-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    2. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    3. Kostas Moustris & Ioanna Larissi & Panagiotis Nastos & Athanasios Paliatsos, 2011. "Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1979-1993, June.
    4. Suman Ravuri & Karel Lenc & Matthew Willson & Dmitry Kangin & Remi Lam & Piotr Mirowski & Megan Fitzsimons & Maria Athanassiadou & Sheleem Kashem & Sam Madge & Rachel Prudden & Amol Mandhane & Aidan C, 2021. "Skilful precipitation nowcasting using deep generative models of radar," Nature, Nature, vol. 597(7878), pages 672-677, September.
    5. Ciobanu Dumitru & Vasilescu Maria, 2013. "Advantages and Disadvantages of Using Neural Networks for Predictions," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 444-449, May.
    6. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Morteza Pakdaman & Iman Babaeian & Zohreh Javanshiri & Yashar Falamarzi, 2022. "European Multi Model Ensemble (EMME): A New Approach for Monthly Forecast of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 611-623, January.
    8. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    3. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    5. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    6. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    7. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    8. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    10. R Maheswaran & Rakesh Khosa, 2014. "A Wavelet-Based Second Order Nonlinear Model for Forecasting Monthly Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5411-5431, December.
    11. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    12. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    13. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    14. Zheng, Chengli & Su, Kuangxi & Yao, Yinhong, 2021. "Hedging futures performance with denoising and noise-assisted strategies," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Xiangzhou Chen & Zhi Long, 2023. "E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    16. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.
    17. Xiao-Yang Liu & Jingyang Rui & Jiechao Gao & Liuqing Yang & Hongyang Yang & Zhaoran Wang & Christina Dan Wang & Jian Guo, 2021. "FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance," Papers 2112.06753, arXiv.org, revised Mar 2022.
    18. Mahdi Sedighkia & Asghar Abdoli, 2023. "Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT-reservoir operation optimization method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 834-854, January.
    19. Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
    20. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03277-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.