IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i7d10.1007_s11269-024-03781-4.html
   My bibliography  Save this article

A Simulation–Optimization System to Assess Dam Construction with a Focus on Environmental Degradation at Downstream

Author

Listed:
  • Mahdi Sedighkia

    (James Cook University)

  • Asghar Abdoli

    (Environment Science Research Institute)

Abstract

The present study proposes and evaluates an integrated framework to assess dam construction and removal, encompassing the simulation of downstream river habitats and reservoir operation in three distinct statuses: conventional reservoir operation optimization, optimal release considering environmental aspects within the optimization model, and natural flow conditions. Fuzzy physical habitat simulation was employed to assess physical habitats, while an ANFIS-based model was utilized to simulate thermal tension and dissolved oxygen tension at downstream habitats. Particle swarm optimization was applied in the optimization models. To evaluate the effectiveness of the proposed framework, results from the optimization system as well as habitat suitability models in the natural flow and current condition were compared using various measurement indices, including the reliability index, vulnerability index, the Nash–Sutcliffe model efficiency coefficient (NSE), and root mean square error (RMSE). The case study results suggest that the reliability of water supply may be diminished under optimal release for environmental and demand considerations. Additionally, optimal release for the environment may not adequately protect downstream aquatic habitats. Therefore, in cases where the preservation of downstream habitats is a priority, dam removal may be a logical solution. Moreover, it is essential to acknowledge that the main limitation of the proposed method is its high computational complexity.

Suggested Citation

  • Mahdi Sedighkia & Asghar Abdoli, 2024. "A Simulation–Optimization System to Assess Dam Construction with a Focus on Environmental Degradation at Downstream," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2489-2509, May.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03781-4
    DOI: 10.1007/s11269-024-03781-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03781-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03781-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia Chen, 2021. "Long-Term Joint Operation of Cascade Reservoirs Using Enhanced Progressive Optimality Algorithm and Dynamic Programming Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2265-2279, May.
    2. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    3. Ciobanu Dumitru & Vasilescu Maria, 2013. "Advantages and Disadvantages of Using Neural Networks for Predictions," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 444-449, May.
    4. Jehangir Awan & Deg-Hyo Bae, 2014. "Improving ANFIS Based Model for Long-term Dam Inflow Prediction by Incorporating Monthly Rainfall Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1185-1199, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Sahin Dogan & Josue Medellin-Azuara & Jay R. Lund, 2024. "Hydropower Reservoir Optimization with Solar Generation-Changed Energy Prices in California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 2135-2153, April.
    2. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    3. Saeid Akbarifard & Mohammad Zounemat-Kermani, 2024. "New Hybrid Optimization Approaches for the Optimal Management of Surface Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6007-6023, December.
    4. Xiaohui Shen & Yonggang Wu & Lingxi Li & Peng He & Tongxin Zhang, 2024. "A Novel Hybrid Algorithm Based on Beluga Whale Optimization and Harris Hawks Optimization for Optimizing Multi-Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4883-4909, September.
    5. Luckny Zephyr & Bernard F. Lamond & Pascal Lang, 2024. "Hybrid simplicial-randomized approximate stochastic dynamic programming for multireservoir optimization," Computational Management Science, Springer, vol. 21(1), pages 1-44, June.
    6. Shaghayegh Rahnama & Adriana Cortez & Andres Monzon, 2024. "Navigating Passenger Satisfaction: A Structural Equation Modeling–Artificial Neural Network Approach to Intercity Bus Services," Sustainability, MDPI, vol. 16(11), pages 1-33, May.
    7. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    8. Adil M. Bagirov & Arshad Mahmood, 2018. "A Comparative Assessment of Models to Predict Monthly Rainfall in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1777-1794, March.
    9. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    10. Yee-Fan Tan & Lee-Yeng Ong & Meng-Chew Leow & Yee-Xian Goh, 2021. "Exploring Time-Series Forecasting Models for Dynamic Pricing in Digital Signage Advertising," Future Internet, MDPI, vol. 13(10), pages 1-24, September.
    11. Ravita D. Prasad, 2024. "School Electricity Consumption in a Small Island Country: The Case of Fiji," Energies, MDPI, vol. 17(7), pages 1-25, April.
    12. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    13. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.
    14. Mathew Habyarimana & Abayomi A. Adebiyi, 2025. "A Review of Artificial Intelligence Applications in Predicting Faults in Electrical Machines," Energies, MDPI, vol. 18(7), pages 1-21, March.
    15. José Eduardo Santos Araújo & Alcigeimes B. Celeste, 2025. "Explicit Stochastic Procedure for Developing Reservoir Storage-Yield-Reliability-Vulnerability Relationships," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 245-270, January.
    16. Mahta Nazari & Reza Kerachian, 2024. "Optimal Operation of Reservoirs Considering Water Quantity and Quality Aspects: A Systematic State-of-the-Art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5911-5944, December.
    17. Li, Lingxi & Wu, Yonggang & Shen, Xiaohui, 2025. "Application of a multi-reservoir dynamic collaborative optimization strategy based on extrema marginal benefits for optimizing reservoir operation," Energy, Elsevier, vol. 324(C).
    18. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    19. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    20. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03781-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.