IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip2p2801-2808.html
   My bibliography  Save this article

Shallow geothermal energy under the microscope: Social, economic, and institutional aspects

Author

Listed:
  • Tsagarakis, Konstantinos P.

Abstract

The design and operation of Shallow Geothermal Energy (SGE) systems have been continuously increasing in scientific research over the past years. What hinders the wide penetration of SGE systems in most countries are issues mostly related to high installation costs, administration, stakeholders' awareness, and marketing. On top of this, SGE systems lack an in-depth economic evaluation, which is often limited to the financial inputs, and thus omitting the non-market monetized environmental benefits. This paper consists of a primer for conceptually improving understanding in regions with low levels of SGE penetration. It provides guidance to project evaluation and discusses the social and institutional strategies to assist SGE systems penetration.

Suggested Citation

  • Tsagarakis, Konstantinos P., 2020. "Shallow geothermal energy under the microscope: Social, economic, and institutional aspects," Renewable Energy, Elsevier, vol. 147(P2), pages 2801-2808.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2801-2808
    DOI: 10.1016/j.renene.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walraven, Daniël & Laenen, Ben & D’haeseleer, William, 2015. "Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled?," Applied Energy, Elsevier, vol. 142(C), pages 144-153.
    2. Cheshire, Paul & Sheppard, Stephen, 2002. "The welfare economics of land use planning," Journal of Urban Economics, Elsevier, vol. 52(2), pages 242-269, September.
    3. Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
    4. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    5. Michopoulos, A. & Kyriakis, N., 2010. "The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps," Renewable Energy, Elsevier, vol. 35(7), pages 1403-1407.
    6. Kharseh, Mohamad & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Utilization of oil wells for electricity generation: Performance and economics," Energy, Elsevier, vol. 90(P1), pages 910-916.
    7. Michelsen, Carl Christian & Madlener, Reinhard, 2013. "Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany," Energy Policy, Elsevier, vol. 57(C), pages 221-233.
    8. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    9. Soldo, Vladimir & Boban, Luka & Borović, Staša, 2016. "Vertical distribution of shallow ground thermal properties in different geological settings in Croatia," Renewable Energy, Elsevier, vol. 99(C), pages 1202-1212.
    10. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    11. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    12. Maria Mrówczyńska & Marta Skiba & Anna Bazan-Krzywoszańska & Dorota Bazuń & Mariusz Kwiatkowski, 2018. "Social and Infrastructural Conditioning of Lowering Energy Costs and Improving the Energy Efficiency of Buildings in the Context of the Local Energy Policy," Energies, MDPI, vol. 11(9), pages 1-16, September.
    13. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    14. Atam, Ercan & Helsen, Lieve, 2016. "Ground-coupled heat pumps: Part 2—Literature review and research challenges in optimal design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1668-1684.
    15. Rhodes, Joshua D. & King, Carey & Gulen, Gürcan & Olmstead, Sheila M. & Dyer, James S. & Hebner, Robert E. & Beach, Fred C. & Edgar, Thomas F. & Webber, Michael E., 2017. "A geographically resolved method to estimate levelized power plant costs with environmental externalities," Energy Policy, Elsevier, vol. 102(C), pages 491-499.
    16. John Creedy & Hemant Passi, 2018. "Public Sector Discount Rates: A Comparison of Alternative Approaches," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 51(1), pages 139-157, March.
    17. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    18. E. Galko & P.‐A. Jayet, 2011. "Economic and environmental effects of decoupled agricultural support in the EU," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 605-618, September.
    19. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    20. Atam, Ercan & Helsen, Lieve, 2016. "Ground-coupled heat pumps: Part 1 – Literature review and research challenges in modeling and optimal control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1653-1667.
    21. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    22. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    23. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    24. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    25. Shum, Kwok L. & Watanabe, Chihiro, 2009. "An innovation management approach for renewable energy deployment--the case of solar photovoltaic (PV) technology," Energy Policy, Elsevier, vol. 37(9), pages 3535-3544, September.
    26. Dalampakis, Paschalis & Gelegenis, John & Ilias, Andreas & Ladas, Angelos & Kolios, Petros, 2017. "Technical and economic assessment of geothermal soil heating systems in row covered protected crops: A case study from Greece," Applied Energy, Elsevier, vol. 203(C), pages 201-218.
    27. Cucchiella, Federica & D’Adamo, Idiano, 2012. "Feasibility study of developing photovoltaic power projects in Italy: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1562-1576.
    28. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    29. Noorollahi, Younes & Gholami Arjenaki, Hamidreza & Ghasempour, Roghayeh, 2017. "Thermo-economic modeling and GIS-based spatial data analysis of ground source heat pump systems for regional shallow geothermal mapping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 648-660.
    30. Paul C. Cheshire, 2013. "Land market regulation: market versus policy failures," Journal of Property Research, Taylor & Francis Journals, vol. 30(3), pages 170-188, September.
    31. Shum, Kwok L. & Watanabe, Chihiro, 2008. "Towards a local learning (innovation) model of solar photovoltaic deployment," Energy Policy, Elsevier, vol. 36(2), pages 508-521, February.
    32. Winskel, Mark & Markusson, Nils & Jeffrey, Henry & Candelise, Chiara & Dutton, Geoff & Howarth, Paul & Jablonski, Sophie & Kalyvas, Christos & Ward, David, 2014. "Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 96-114.
    33. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    34. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    35. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    36. Chiemi Iba & Shun Takano & Shuichi Hokoi, 2018. "An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House," Energies, MDPI, vol. 11(5), pages 1-13, April.
    37. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    38. Pierpaolo Pattitoni & Barbara Petracci & Massimo Spisni, 2014. "Determinants of profitability in the EU-15 area," Applied Financial Economics, Taylor & Francis Journals, vol. 24(11), pages 763-775, June.
    39. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    40. Jeong-Heum Cho & Yujin Nam & Hyoung-Chan Kim, 2016. "Performance and Feasibility Study of a Standing Column Well (SCW) System Using a Deep Geothermal Well," Energies, MDPI, vol. 9(2), pages 1-13, February.
    41. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majuri, Pirjo & Arola, Teppo & Kumpula, Anne & Vuorisalo, Timo, 2021. "Geoenergy permits in Finnish regional administration – Contradictory practices and inadequate judicial regulation," Renewable Energy, Elsevier, vol. 168(C), pages 151-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis E. Kosmadakis & Costas Elmasides & Dimitrios Eleftheriou & Konstantinos P. Tsagarakis, 2019. "A Techno-Economic Analysis of a PV-Battery System in Greece," Energies, MDPI, vol. 12(7), pages 1-14, April.
    2. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    3. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    4. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    5. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    6. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.
    7. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Hou, Fujun & Sinha, Avik, 2018. "¬¬¬¬¬¬From Nonrenewable to Renewable Energy and Its Impact on Economic Growth: Silver Line of Research & Development Expenditures in APEC Countries," MPRA Paper 90611, University Library of Munich, Germany, revised 10 Dec 2018.
    8. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    9. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    10. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    11. Bilgili, Faik & Kuşkaya, Sevda & Toğuç, Nurhan & Muğaloğlu, Erhan & Koçak, Emrah & Bulut, Ümit & Bağlıtaş, H. Hilal, 2019. "A revisited renewable consumption-growth nexus: A continuous wavelet approach through disaggregated data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 1-19.
    12. Vural, Gulfer, 2020. "Renewable and non-renewable energy-growth nexus: A panel data application for the selected Sub-Saharan African countries," Resources Policy, Elsevier, vol. 65(C).
    13. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Wan-Jiun Chen, 2022. "Toward Sustainability: Dynamics of Total Carbon Dioxide Emissions, Aggregate Income, Non-Renewable Energy, and Renewable Power," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    16. Nadia Singh & Richard Nyuur & Ben Richmond, 2019. "Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    17. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    19. Mihaela Simionescu & Carmen Beatrice Păuna & Tiberiu Diaconescu, 2020. "Renewable Energy and Economic Performance in the Context of the European Green Deal," Energies, MDPI, vol. 13(23), pages 1-19, December.
    20. Rafał Kasperowicz & Yuriy Bilan & Dalia Štreimikienė, 2020. "The renewable energy and economic growth nexus in European countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1086-1093, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2801-2808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.