IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp410-425.html
   My bibliography  Save this article

Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making

Author

Listed:
  • Wu, Yunna
  • Zhang, Ting
  • Xu, Chuanbo
  • Zhang, Xiaoyu
  • Ke, Yiming
  • Chu, Han
  • Xu, Ruhang

Abstract

With the urgent need for energy conservation and intrinsic intermittence optimization, seawater pumped hydro energy storage (SPHS) is developing rapidly in the foreign countries but no one has been built in China. Nevertheless, with vast resources, our country pays much attention on SPHS site selection lately since its superiority and the need for long-term energy development. To select the most ideal SPHS site from numerous candidate alternatives, 18 evaluation criteria are set in this paper. Due to vague relevance among criteria, λ-fuzzy measure combining Analytic Hierarchy Process (AHP) and entropy weight method are proposed to determine criteria weights. Later, fuzzy Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is applied to sort an optimal solution for the SPHS construction. Simultaneously, the published data from National Energy Administration (NEA) combining experts' scoring and public opinions are calculated as a case and the Fu Ying Island in Ning De is proved to be the best. In order to ensure the validity and stability of the result, comparative and sensitive analysis are proposed. Overall, the proposed model can provide a reference to the government and electricity grid for further evaluation since SPHS site selection has not been deeply studied in China.

Suggested Citation

  • Wu, Yunna & Zhang, Ting & Xu, Chuanbo & Zhang, Xiaoyu & Ke, Yiming & Chu, Han & Xu, Ruhang, 2019. "Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making," Renewable Energy, Elsevier, vol. 139(C), pages 410-425.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:410-425
    DOI: 10.1016/j.renene.2019.02.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
    2. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    3. Li, Jianping & Yao, Xiaoyang & Sun, Xiaolei & Wu, Dengsheng, 2018. "Determining the fuzzy measures in multiple criteria decision aiding from the tolerance perspective," European Journal of Operational Research, Elsevier, vol. 264(2), pages 428-439.
    4. Bridier, Laurent & David, Mathieu & Lauret, Philippe, 2014. "Optimal design of a storage system coupled with intermittent renewables," Renewable Energy, Elsevier, vol. 67(C), pages 2-9.
    5. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    6. Ishizaka, Alessio & Siraj, Sajid, 2018. "Are multi-criteria decision-making tools useful? An experimental comparative study of three methods," European Journal of Operational Research, Elsevier, vol. 264(2), pages 462-471.
    7. Magni, Carlo Alberto, 2015. "Investment, financing and the role of ROA and WACC in value creation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 855-866.
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    9. Carlo Alberto Magni, 2015. "Investment, financing and the role of ROA and WACC in value creation," Department of Economics 0050, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    10. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    11. Jun, Dong & Tian-tian, Feng & Yi-sheng, Yang & Yu, Ma, 2014. "Macro-site selection of wind/solar hybrid power station based on ELECTRE-II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 194-204.
    12. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    13. Awasthi, Anjali & Govindan, Kannan & Gold, Stefan, 2018. "Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach," International Journal of Production Economics, Elsevier, vol. 195(C), pages 106-117.
    14. Azevedo, Vitor G. & Sartori, Simone & Campos, Lucila M.S., 2018. "CO2 emissions: A quantitative analysis among the BRICS nations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 107-115.
    15. Jiménez Capilla, J.A. & Carrión, J. Arán & Alameda-Hernandez, E., 2016. "Optimal site selection for upper reservoirs in pump-back systems, using geographical information systems and multicriteria analysis," Renewable Energy, Elsevier, vol. 86(C), pages 429-440.
    16. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    17. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    18. Dey, Prasanta Kumar, 2006. "Integrated project evaluation and selection using multiple-attribute decision-making technique," International Journal of Production Economics, Elsevier, vol. 103(1), pages 90-103, September.
    19. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    20. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
    21. Akintola Akintoye, 2000. "Analysis of factors influencing project cost estimating practice," Construction Management and Economics, Taylor & Francis Journals, vol. 18(1), pages 77-89.
    22. Lei Wang & Mingfang Ni & Lei Zhu, 2013. "Correlation Measures of Dual Hesitant Fuzzy Sets," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-12, November.
    23. Connolly, D. & MacLaughlin, S. & Leahy, M., 2010. "Development of a computer program to locate potential sites for pumped hydroelectric energy storage," Energy, Elsevier, vol. 35(1), pages 375-381.
    24. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    25. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    26. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    2. Yang, Shi-guan & Zhou, Jia-le & Hu, Zhuang & Zhou, Xin-yue & Cai, Qi & Xie, Jin-heng & Wu, Yang-wen & Lu, Qiang, 2023. "Site selection decision framework for biomass pyrolysis project based on a mixed method under probabilistic linguistic environment and low carbon perspective: A case study in China," Energy, Elsevier, vol. 272(C).
    3. Zhao, Chengwei & Xu, Xuanhua & Liu, Ruihuan & He, Jishan, 2021. "A multi-aspect coordination HDRED site selection framework under multi-type heterogeneous environments," Renewable Energy, Elsevier, vol. 171(C), pages 833-848.
    4. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    5. Wu, Yunna & Liao, Mingjuan & Hu, Mengyao & Lin, Jiawei & Zhou, Jianli & Zhang, Buyuan & Xu, Chuanbo, 2020. "A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China," Energy, Elsevier, vol. 213(C).
    6. Yanbin Li & Yanting Sun & Yulin Kang & Feng Zhang & Junjie Zhang, 2023. "An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders," Energies, MDPI, vol. 16(2), pages 1-26, January.
    7. Nzotcha, Urbain & Nsangou, Jean Calvin & Kenfack, Joseph & Ngohe-Ekam, Paul Salomon & Hamandjoda, Oumarou & Bignom, Blaise, 2021. "Combining electric energy storage and deep-lake degassing by means of pumped hydropower," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    2. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Nzotcha, Urbain & Nsangou, Jean Calvin & Kenfack, Joseph & Ngohe-Ekam, Paul Salomon & Hamandjoda, Oumarou & Bignom, Blaise, 2021. "Combining electric energy storage and deep-lake degassing by means of pumped hydropower," Applied Energy, Elsevier, vol. 304(C).
    4. Lu, Bin & Stocks, Matthew & Blakers, Andrew & Anderson, Kirsten, 2018. "Geographic information system algorithms to locate prospective sites for pumped hydro energy storage," Applied Energy, Elsevier, vol. 222(C), pages 300-312.
    5. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    6. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    7. Nasir, Jehanzeb & Javed, Adeel & Ali, Majid & Ullah, Kafait & Kazmi, Syed Ali Abbas, 2022. "Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation," Applied Energy, Elsevier, vol. 323(C).
    8. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    9. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    10. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    11. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.
    12. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
    13. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    14. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Magni, Carlo Alberto, 2016. "Capital depreciation and the underdetermination of rate of return: A unifying perspective," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 54-79.
    16. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    17. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    18. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    19. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    20. Xiaodong Teng & Bao-Guang Chang & Kun-Shan Wu, 2021. "The Role of Financial Flexibility on Enterprise Sustainable Development during the COVID-19 Crisis—A Consideration of Tangible Assets," Sustainability, MDPI, vol. 13(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:410-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.