IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp336-344.html
   My bibliography  Save this article

Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis

Author

Listed:
  • Kanjaikaew, Utaiwan
  • Tongurai, Chakrit
  • Chongkhong, Sininart
  • Prasertsit, Kulchanat

Abstract

Low-cost palm fatty acid distillate (PFAD) feedstock to produce biodiesel is of interest. Single step esterification of PFAD is effective but requires large amounts of chemicals. Removal of water in a two-step process increases the effectiveness of FFA conversion with methanol, but ethanol has yet to be investigated and hence was proposed. Effects of parameters: ethanol to FFA molar ratio, temperature, time and catalyst amount, were investigated. In the first step, catalyst amount was kept constant; and for the second-step, the reaction temperature was fixed. RSM coupled with sensitivity analysis enabled parameters to be optimized. Optimal conditions for the first step were: 4:1 M ratio, 353 K and 15 min, resulting in 88% FFA conversion. In the second step, the conversion reached 86.8% under these conditions: 27:1 M ratio, 53 min and 35.3 wt% catalyst amount. Under these two sets of optimal conditions, the overall FFA conversion of 98.44% was comparable to other studies. The attempt on the use of ethanol to produce ethyl ester in a two-step process of PFAD is quite successful: ethanol, renewable and more environmental friendly, is a contending effective alternative.

Suggested Citation

  • Kanjaikaew, Utaiwan & Tongurai, Chakrit & Chongkhong, Sininart & Prasertsit, Kulchanat, 2018. "Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis," Renewable Energy, Elsevier, vol. 119(C), pages 336-344.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:336-344
    DOI: 10.1016/j.renene.2017.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    3. Lokman, Ibrahim M. & Rashid, Umer & Taufiq-Yap, Yun Hin & Yunus, Robiah, 2015. "Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst," Renewable Energy, Elsevier, vol. 81(C), pages 347-354.
    4. Park, Ji-Yeon & Wang, Zhong-Ming & Kim, Deog-Keun & Lee, Jin-Suk, 2010. "Effects of water on the esterification of free fatty acids by acid catalysts," Renewable Energy, Elsevier, vol. 35(3), pages 614-618.
    5. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    6. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    7. Hanh, Hoang Duc & Dong, Nguyen The & Okitsu, Kenji & Nishimura, Rokuro & Maeda, Yasuaki, 2009. "Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition," Renewable Energy, Elsevier, vol. 34(3), pages 780-783.
    8. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    9. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    10. Oliveira, João Felipe G. & Lucena, Izabelly Larissa & Saboya, Rosana M. Alves & Rodrigues, Marcelo L. & Torres, Antonio Eurico B. & Fernandes, Fabiano A. Narciso & Cavalcante, Célio L. & Parente, Expe, 2010. "Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption," Renewable Energy, Elsevier, vol. 35(11), pages 2581-2584.
    11. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    12. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    2. Noge, Hirofumi & Ueno, Yoshie & Kadir, Hasannuddin Abdul & Yahya, Wira Jazair, 2021. "Utilization of palm acid oil for a diffusion combustion burner as fuel and nitrogen oxides reduction by the thermally decomposed hydrocarbons," Energy, Elsevier, vol. 224(C).
    3. Simões, S.S. & Ribeiro, J.S. & Celante, D. & Brondani, L.N. & Castilhos, F., 2020. "Heterogeneous catalyst screening for fatty acid methyl esters production through interesterification reaction," Renewable Energy, Elsevier, vol. 146(C), pages 719-726.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    5. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    6. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    8. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    9. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    10. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    11. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    12. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    13. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    14. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    15. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    16. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    17. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    18. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    19. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    20. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:336-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.