IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i11p2581-2584.html
   My bibliography  Save this article

Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption

Author

Listed:
  • Oliveira, João Felipe G.
  • Lucena, Izabelly Larissa
  • Saboya, Rosana M. Alves
  • Rodrigues, Marcelo L.
  • Torres, Antonio Eurico B.
  • Fernandes, Fabiano A. Narciso
  • Cavalcante, Célio L.
  • Parente, Expedito José S.

Abstract

The production of biodiesel by esterification with ethanol using waste oil generated in the refining of coconut oil was investigated in this study. The reaction was performed with and without adsorption of water in order to verify the effect of removing water on the reaction conversion. Methanol was also evaluated as an esterification agent. For both ethanol and methanol, conversions over 99%mol were observed. Simultaneous water adsorption allowed the use of lower alcohol/oil molar ratios thus enabling better economics to a possible industrial process.

Suggested Citation

  • Oliveira, João Felipe G. & Lucena, Izabelly Larissa & Saboya, Rosana M. Alves & Rodrigues, Marcelo L. & Torres, Antonio Eurico B. & Fernandes, Fabiano A. Narciso & Cavalcante, Célio L. & Parente, Expe, 2010. "Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption," Renewable Energy, Elsevier, vol. 35(11), pages 2581-2584.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2581-2584
    DOI: 10.1016/j.renene.2010.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahid, Ejaz M. & Jamal, Younis, 2008. "A review of biodiesel as vehicular fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2484-2494, December.
    2. Chongkhong, S. & Tongurai, C. & Chetpattananondh, P., 2009. "Continuous esterification for biodiesel production from palm fatty acid distillate using economical process," Renewable Energy, Elsevier, vol. 34(4), pages 1059-1063.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
    2. Li, Qiang & Xu, Jingyang & Du, Wei & Li, Yang & Liu, Dehua, 2013. "Ethanol as the acyl acceptor for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 742-748.
    3. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    4. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    5. Farobie, Obie & Sasanami, Kazuma & Matsumura, Yukihiko, 2015. "A novel spiral reactor for biodiesel production in supercritical ethanol," Applied Energy, Elsevier, vol. 147(C), pages 20-29.
    6. D'Amato Villardi, Hugo Gomes & Leal, Monique Ferreira & Pellegrini Pessoa, Fernando Luiz & Salgado, Andréa Medeiros, 2019. "Synthesis of methyl esters through residual feedstock using acid and free catalyst – Proposal of new reactor," Renewable Energy, Elsevier, vol. 131(C), pages 1146-1155.
    7. Kanjaikaew, Utaiwan & Tongurai, Chakrit & Chongkhong, Sininart & Prasertsit, Kulchanat, 2018. "Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis," Renewable Energy, Elsevier, vol. 119(C), pages 336-344.
    8. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    2. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    3. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    4. Sukkasi, Sittha & Chollacoop, Nuwong & Ellis, Wyn & Grimley, Simon & Jai-In, Samai, 2010. "Challenges and considerations for planning toward sustainable biodiesel development in developing countries: Lessons from the Greater Mekong Subregion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3100-3107, December.
    5. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    6. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    7. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    8. Sangar, Shatesh Kumar & Syazwani, Osman Nur & Farabi, M.S. Ahmad & Razali, S.M. & Shobhana, Gnanasekhar & Teo, Siow Hwa & Taufiq-Yap, Yun Hin, 2019. "Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol," Renewable Energy, Elsevier, vol. 142(C), pages 658-667.
    9. Noge, Hirofumi & Ueno, Yoshie & Kadir, Hasannuddin Abdul & Yahya, Wira Jazair, 2021. "Utilization of palm acid oil for a diffusion combustion burner as fuel and nitrogen oxides reduction by the thermally decomposed hydrocarbons," Energy, Elsevier, vol. 224(C).
    10. Kuti, Olawole Abiola & Nishida, Keiya & Zhu, Jingyu, 2013. "Experimental studies on spray and gas entrainment characteristics of biodiesel fuel: Implications of gas entrained and fuel oxygen content on soot formation," Energy, Elsevier, vol. 57(C), pages 434-442.
    11. Stojković, Ivan J. & Stamenković, Olivera S. & Povrenović, Dragan S. & Veljković, Vlada B., 2014. "Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 1-15.
    12. Gargari, M. Hashemzadeh & Sadrameli, S.M., 2019. "A single-phase transesterification of linseed oil using different co-solvents and hydrogel in the presence of calcium oxide: An optimization study," Renewable Energy, Elsevier, vol. 139(C), pages 426-434.
    13. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    14. Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
    15. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    16. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    17. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    18. da Silva, Marcelo José & Melegari de Souza, Samuel Nelson & Inácio Chaves, Luiz & Aparecido Rosa, Helton & Secco, Deonir & Ferreira Santos, Reginaldo & Aparecido Baricatti, Reinaldo & Camargo Nogueira, 2013. "Comparative analysis of engine generator performance using diesel oil and biodiesels available in Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 278-282.
    19. Kandasamy, Senthil Kumar & Selvaraj, Arun Saco & Rajagopal, Thundil Karuppa Raj, 2019. "Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics," Renewable Energy, Elsevier, vol. 141(C), pages 411-419.
    20. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:11:p:2581-2584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.