IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics095183202400396x.html
   My bibliography  Save this article

Condition monitoring based on corrupted multiple time series with common trends

Author

Listed:
  • Wei, Yujie
  • Pan, Ershun
  • Ye, Zhi-Sheng

Abstract

Condition monitoring is a fundamental task in the reliability engineering and operation management of a complex industrial system. It aims to detect faults based on sensing data but poses significant challenges when dealing with corrupted multiple time series data in many real-world applications. These time series typically exhibit similar changing patterns influenced by common trends (e.g., workload, ambient condition) and physical relationships among corresponding variables, and are often significantly corrupted large outliers (e.g., transmission interruption). Although several traditional common trend models have been employed to analyze such condition monitoring data in the literature, they are fully parametric, constrained by restrictive assumptions, and not robust to outliers. In this article, we propose a novel semiparametric decomposition model to analyze a set of monitored time series and separate it into common, idiosyncratic, and sparse components, under relatively mild assumptions. We also introduce effective algorithms for model estimation and a monitoring scheme for fault detection. The numerical and real case studies demonstrate the superiority of the proposed method over existing approaches, in terms of both decomposition accuracy and detection performance for system faults.

Suggested Citation

  • Wei, Yujie & Pan, Ershun & Ye, Zhi-Sheng, 2024. "Condition monitoring based on corrupted multiple time series with common trends," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400396x
    DOI: 10.1016/j.ress.2024.110324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    2. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    4. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    5. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Xinbing Kong & Jiangyan Wang & Jinbao Xing & Chao Xu & Chao Ying, 2019. "Factor and Idiosyncratic Empirical Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1138-1146, July.
    7. Alvaro Escribano & Daniel Peña, 1994. "Cointegration And Common Factors," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 577-586, November.
    8. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Alvaro Escribano & Daniel Peña, 1994. "Cointegration And Common Factors," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 577-586, November.
    10. Chen Zhang & Hao Yan & Seungho Lee & Jianjun Shi, 2018. "Weakly correlated profile monitoring based on sparse multi-channel functional principal component analysis," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 878-891, October.
    11. Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    13. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    2. Pham Van Ha & Tom Kompas, 2008. "Productivity and Exchange Rate Dynamics: Supporting the Harrod-Balassa-Samuelson Hypothesis through an ‘Errors in Variables’ Analysis," International and Development Economics Working Papers idec08-03, International and Development Economics.
    3. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    4. Huh, Hyeon-seung & Kim, David, 2013. "An empirical test of exogenous versus endogenous growth models for the G-7 countries," Economic Modelling, Elsevier, vol. 32(C), pages 262-272.
    5. Peña, Daniel & Poncela, Pilar, 1996. "Pooling information and forecasting with dynamic factor analysis," DES - Working Papers. Statistics and Econometrics. WS 10709, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Hiroaki Chigira & Taku Yamamoto, 2009. "Forecasting in large cointegrated processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 631-650.
    7. Arino, Miguel A. & Newbold, Paul, 1998. "Computation of the Beveridge-Nelson decomposition for multivariate economic time series," Economics Letters, Elsevier, vol. 61(1), pages 37-42, October.
    8. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    9. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    10. Escribano, Álvaro & Pascual, Roberto, 2000. "Dynamic asymmetries in bid-ask responses to innovations in the trading process," UC3M Working papers. Economics 7271, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    12. Joakim Westerlund & Simon Reese & Paresh Narayan, 2017. "A Factor Analytical Approach to Price Discovery," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 366-394, June.
    13. Park, Yang-Ho, 2020. "Variance disparity and market frictions," Journal of Econometrics, Elsevier, vol. 214(2), pages 326-348.
    14. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, December.
    15. Peña, Daniel & Poncela, Pilar, 1997. "Eigenstructure of nonstationary factor models," DES - Working Papers. Statistics and Econometrics. WS 6224, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Flad, Michael & Jung, Robert C., 2008. "A common factor analysis for the US and the German stock markets during overlapping trading hours," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 498-512, December.
    17. Tu, Yundong & Yao, Qiwei & Zhang, Rongmao, 2020. "Error-correction factor models for high-dimensional cointegrated time series," LSE Research Online Documents on Economics 106994, London School of Economics and Political Science, LSE Library.
    18. Adewuyi, Adeolu O. & Wahab, Bashir A. & Adeboye, Olusegun S., 2020. "Stationarity of prices of precious and industrial metals using recent unit root methods: Implications for markets’ efficiency," Resources Policy, Elsevier, vol. 65(C).
    19. Korczak, Piotr & Phylaktis, Kate, 2010. "Related securities and price discovery: Evidence from NYSE-listed Non-U.S. stocks," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 566-584, September.
    20. Qizilbash, M., 1995. "Egalitarian justice, capability and well-being prospects," Discussion Paper Series In Economics And Econometrics 9516, Economics Division, School of Social Sciences, University of Southampton.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400396x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.