IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v92y2004i3p281-294.html
   My bibliography  Save this article

A numerical comparison of three potential learning and forgetting models

Author

Listed:
  • Jaber, Mohamad Y.
  • Sikstrom, Sverker

Abstract

No abstract is available for this item.

Suggested Citation

  • Jaber, Mohamad Y. & Sikstrom, Sverker, 2004. "A numerical comparison of three potential learning and forgetting models," International Journal of Production Economics, Elsevier, vol. 92(3), pages 281-294, December.
  • Handle: RePEc:eee:proeco:v:92:y:2004:i:3:p:281-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(03)00327-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaber, Mohamad Y. & Kher, Hemant V. & Davis, Darwin J., 2003. "Countering forgetting through training and deployment," International Journal of Production Economics, Elsevier, vol. 85(1), pages 33-46, July.
    2. Charles D. Bailey, 1989. "Forgetting and the Learning Curve: A Laboratory Study," Management Science, INFORMS, vol. 35(3), pages 340-352, March.
    3. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    4. Nile W. Hatch & David C. Mowery, 1998. "Process Innovation and Learning by Doing in Semiconductor Manufacturing," Management Science, INFORMS, vol. 44(11-Part-1), pages 1461-1477, November.
    5. Terwiesch, Christian & E. Bohn, Roger, 2001. "Learning and process improvement during production ramp-up," International Journal of Production Economics, Elsevier, vol. 70(1), pages 1-19, March.
    6. Linda Argote & Sara L. Beckman & Dennis Epple, 1990. "The Persistence and Transfer of Learning in Industrial Settings," Management Science, INFORMS, vol. 36(2), pages 140-154, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    2. Corominas, Albert & Olivella, Jordi & Pastor, Rafael, 2010. "A model for the assignment of a set of tasks when work performance depends on experience of all tasks involved," International Journal of Production Economics, Elsevier, vol. 126(2), pages 335-340, August.
    3. Jaber, Mohamad Y. & Bonney, Maurice & Guiffrida, Alfred L., 2010. "Coordinating a three-level supply chain with learning-based continuous improvement," International Journal of Production Economics, Elsevier, vol. 127(1), pages 27-38, September.
    4. Plaza, Malgorzata & Rohlf, Katrin, 2008. "Learning and performance in ERP implementation projects: A learning-curve model for analyzing and managing consulting costs," International Journal of Production Economics, Elsevier, vol. 115(1), pages 72-85, September.
    5. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    6. Alamri, Adel. A. & Balkhi, Zaid T., 2007. "The effects of learning and forgetting on the optimal production lot size for deteriorating items with time varying demand and deterioration rates," International Journal of Production Economics, Elsevier, vol. 107(1), pages 125-138, May.
    7. Plaza, Malgorzata, 2016. "Balancing the costs of human resources on an ERP project," Omega, Elsevier, vol. 59(PB), pages 171-183.
    8. Hewitt, Mike & Chacosky, Austin & Grasman, Scott E. & Thomas, Barrett W., 2015. "Integer programming techniques for solving non-linear workforce planning models with learning," European Journal of Operational Research, Elsevier, vol. 242(3), pages 942-950.
    9. Yamane, Yasuo & Takahashi, Katsuhiko & Hamada, Kunihiro & Morikawa, Katsumi & Nur Bahagia, Senator & Diawati, Lucia & Cakravastia, Andi, 2015. "Developing a plant system prediction model for technology transfer," International Journal of Production Economics, Elsevier, vol. 166(C), pages 119-128.
    10. Zanoni, Simone & Jaber, Mohamad Y. & Zavanella, Lucio E., 2012. "Vendor managed inventory (VMI) with consignment considering learning and forgetting effects," International Journal of Production Economics, Elsevier, vol. 140(2), pages 721-730.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:92:y:2004:i:3:p:281-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.