IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v36y2024i2d10.1007_s10696-023-09500-2.html
   My bibliography  Save this article

Modelling forgetting due to intermittent production in mixed-model line scheduling

Author

Listed:
  • Frederik Ferid Ostermeier

    (BMW Group
    Technical University of Dortmund)

  • Jochen Deuse

    (Technical University of Dortmund
    University of Technology Sydney)

Abstract

Forgetting effects occur whenever production is interrupted and workers lose previously acquired routine. Existing forgetting models primarily focused on the impacts of production breaks in single-product production environments. Consequently, forgetting models neglected times during which a different product type is produced despite being an important cause for forgetting in industrial mixed-model production. Therefore, this work extends existing forgetting models for application in mixed-model line scheduling models by considering times of intermittent production. These are modelled as interruptions in addition to production break interruptions. A routine loss factor is introduced that allows to partially consider times elapsed during which different products are processed. The higher the routine loss factor is, the higher the considered portion of the time elapsed due to intermittent production becomes and the higher becomes the amount of forgetting. Through means of simulation studies it is investigated how the routine loss factor affects the height of learning effects present and the line performance in terms of makespan and flow time. While sequence types with a higher degree of grouping are almost insensitive with respect to the height of the routine loss factor, sequences with no grouping are strongly affected. Depending on the height of the routine loss factor different sequence types are preferred. Hence, not modelling forgetting appropriately can lead to non-optimal schedules.

Suggested Citation

  • Frederik Ferid Ostermeier & Jochen Deuse, 2024. "Modelling forgetting due to intermittent production in mixed-model line scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 36(2), pages 503-532, June.
  • Handle: RePEc:spr:flsman:v:36:y:2024:i:2:d:10.1007_s10696-023-09500-2
    DOI: 10.1007/s10696-023-09500-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-023-09500-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-023-09500-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 115512, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. H V Kher, 2000. "Examination of flexibility acquisition policies in dual resource constrained job shops with simultaneous worker learning and forgetting effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 592-601, May.
    3. Reddy Dondeti, V. & Mohanty, Bidhu B., 1998. "Impact of learning and fatigue factors on single machine scheduling with penalties for tardy jobs," European Journal of Operational Research, Elsevier, vol. 105(3), pages 509-524, March.
    4. Scott M. Shafer & David A. Nembhard & Mustafa V. Uzumeri, 2001. "The Effects of Worker Learning, Forgetting, and Heterogeneity on Assembly Line Productivity," Management Science, INFORMS, vol. 47(12), pages 1639-1653, December.
    5. Ameni Azzouz & Meriem Ennigrou & Lamjed Ben Said, 2018. "Scheduling problems under learning effects: classification and cartography," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1642-1661, February.
    6. Jaber, M. Y. & Kher, H. V., 2002. "The dual-phase learning-forgetting model," International Journal of Production Economics, Elsevier, vol. 76(3), pages 229-242, April.
    7. Jaber, Mohamad Y. & Sikstrom, Sverker, 2004. "A numerical comparison of three potential learning and forgetting models," International Journal of Production Economics, Elsevier, vol. 92(3), pages 281-294, December.
    8. Kher, Hemant V. & Malhotra, Manoj K. & Philipoom, Patrick R. & Fry, Timothy D., 1999. "Modeling simultaneous worker learning and forgetting in dual resource constrained systems," European Journal of Operational Research, Elsevier, vol. 115(1), pages 158-172, May.
    9. Jaber, Mohamad Y. & Kher, Hemant V. & Davis, Darwin J., 2003. "Countering forgetting through training and deployment," International Journal of Production Economics, Elsevier, vol. 85(1), pages 33-46, July.
    10. Zamiska, John R. & Jaber, Mohamad Y. & Kher, Hemant V., 2007. "Worker deployment in dual resource constrained systems with a task-type factor," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1507-1519, March.
    11. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    12. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 115511, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    14. Charles D. Bailey, 1989. "Forgetting and the Learning Curve: A Laboratory Study," Management Science, INFORMS, vol. 35(3), pages 340-352, March.
    15. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    16. Frederik Ferid Ostermeier, 2020. "The impact of human consideration, schedule types and product mix on scheduling objectives for unpaced mixed-model assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 58(14), pages 4386-4405, July.
    17. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 107692, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. T.C. Cheng & Guoqing Wang, 2000. "Single Machine Scheduling with Learning Effect Considerations," Annals of Operations Research, Springer, vol. 98(1), pages 273-290, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    2. Frederik Ferid Ostermeier & Jochen Deuse, 2024. "A review and classification of scheduling objectives in unpaced flow shops for discrete manufacturing," Journal of Scheduling, Springer, vol. 27(1), pages 29-49, February.
    3. Xu, J. & Xu, X. & Xie, S.Q., 2011. "Recent developments in Dual Resource Constrained (DRC) system research," European Journal of Operational Research, Elsevier, vol. 215(2), pages 309-318, December.
    4. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2024. "Learning and forgetting interactions within a collaborative human-centric manufacturing network," European Journal of Operational Research, Elsevier, vol. 313(3), pages 977-991.
    5. Cavagnini, Rossana & Hewitt, Mike & Maggioni, Francesca, 2020. "Workforce production planning under uncertain learning rates," International Journal of Production Economics, Elsevier, vol. 225(C).
    6. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    7. Chen, Ke & Cheng, T.C.E. & Huang, Hailiang & Ji, Min & Yao, Danli, 2023. "Single-machine scheduling with autonomous and induced learning to minimize total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 24-34.
    8. Zamiska, John R. & Jaber, Mohamad Y. & Kher, Hemant V., 2007. "Worker deployment in dual resource constrained systems with a task-type factor," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1507-1519, March.
    9. Corominas, Albert & Olivella, Jordi & Pastor, Rafael, 2010. "A model for the assignment of a set of tasks when work performance depends on experience of all tasks involved," International Journal of Production Economics, Elsevier, vol. 126(2), pages 335-340, August.
    10. Nasr, Walid W. & Jaber, Mohamad Y., 2019. "Supplier development in a two-level lot sizing problem with non-conforming items and learning," International Journal of Production Economics, Elsevier, vol. 216(C), pages 349-363.
    11. Eryk Szwarc & Grzegorz Bocewicz & Paulina Golińska-Dawson & Zbigniew Banaszak, 2023. "Proactive Operations Management: Staff Allocation with Competence Maintenance Constraints," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    12. Jaber, M.Y. & Peltokorpi, J. & Glock, C.H. & Grosse, E.H. & Pusic, M., 2021. "Adjustment for cognitive interference enhances the predictability of the power learning curve," International Journal of Production Economics, Elsevier, vol. 234(C).
    13. Lai, Peng-Jen & Lee, Wen-Chiung, 2011. "Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects," Omega, Elsevier, vol. 39(5), pages 467-471, October.
    14. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    15. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).
    16. Azizi, Nader & Zolfaghari, Saeed & Liang, Ming, 2010. "Modeling job rotation in manufacturing systems: The study of employee's boredom and skill variations," International Journal of Production Economics, Elsevier, vol. 123(1), pages 69-85, January.
    17. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    18. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    19. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    20. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:36:y:2024:i:2:d:10.1007_s10696-023-09500-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.