IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v261y2023ics0925527323001007.html
   My bibliography  Save this article

Influences of artificial intelligence and blockchain technology on financial resilience of supply chains

Author

Listed:
  • Gupta, Shivam
  • Modgil, Sachin
  • Choi, Tsan-Ming
  • Kumar, Ajay
  • Antony, Jiju

Abstract

Emerging technologies, such as artificial intelligence (AI) and blockchain technology (BT), have revolutionized the way businesses are managed nowadays, whereas the focus on financial resilience remains critical even in an era of complexity and uncertainty. This study empirically explores the capabilities of AI and BT to ascertain its role in financial resilience of a supply chain. Further study considers the environmental dynamism moderating the relationship of AI and BT leading to financial resilience of supply chains. Adopting a multi-methodological approach, we conduct an empirical and qualitative study to explore the relationship between AI, BT, and the financial resilience of supply chains. For data collection, 202 survey responses from supply chain professionals were collected to test the theoretical model, whereas the qualitative study collected responses from 25 supply chain professionals using semi-structured interviews and the grounded approach. After using structural equation modeling for the quantitative data analysis, our findings indicate that, compared to artificial intelligence, blockchain technology is stronger in facilitating financial resilience of a supply chain under the moderating influence of environmental dynamism. Thematic analysis for the qualitative study indicate the role of AI in sensing, blockchain in seizing and financial resilience in reconfiguring the opportunities lie in supply chain. AI is suitable for sensing the business environment and facilitating blockchain deployment. This study offers a theoretical contribution, along with practical implications for managers.

Suggested Citation

  • Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:proeco:v:261:y:2023:i:c:s0925527323001007
    DOI: 10.1016/j.ijpe.2023.108868
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323001007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Jarrahi, Mohammad Hossein, 2018. "Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making," Business Horizons, Elsevier, vol. 61(4), pages 577-586.
    3. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    4. Min, Hokey, 2019. "Blockchain technology for enhancing supply chain resilience," Business Horizons, Elsevier, vol. 62(1), pages 35-45.
    5. Cheon-Pyo Lee & Jung P Shim, 2007. "An exploratory study of radio frequency identification (RFID) adoption in the healthcare industry," European Journal of Information Systems, Taylor & Francis Journals, vol. 16(6), pages 712-724, December.
    6. Shalit, Sol S & Sankar, Ulaganathan, 1977. "The Measurement of Firm Size," The Review of Economics and Statistics, MIT Press, vol. 59(3), pages 290-298, August.
    7. Tsan‐Ming Choi & Subodha Kumar & Xiaohang Yue & Hau‐Ling Chan, 2022. "Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 9-31, January.
    8. Mohamed Behnassi & Mahjoub El Haiba, 2022. "Implications of the Russia–Ukraine war for global food security," Nature Human Behaviour, Nature, vol. 6(6), pages 754-755, June.
    9. Li, Guo & Xue, Jing & Li, Na & Ivanov, Dmitry, 2022. "Blockchain-supported business model design, supply chain resilience, and firm performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    10. David J. Teece, 2007. "Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance," Strategic Management Journal, Wiley Blackwell, vol. 28(13), pages 1319-1350, December.
    11. Angappa Gunasekaran & Nachiappan Subramanian & Shams Rahman, 2015. "Supply chain resilience: role of complexities and strategies," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6809-6819, November.
    12. Choi, Tsan-Ming & Guo, Shu & Liu, Na & Shi, Xiutian, 2020. "Optimal pricing in on-demand-service-platform-operations with hired agents and risk-sensitive customers in the blockchain era," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1031-1042.
    13. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    14. Alexandre Dolgui & Dmitry Ivanov, 2022. "5G in digital supply chain and operations management: fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything," International Journal of Production Research, Taylor & Francis Journals, vol. 60(2), pages 442-451, January.
    15. George Baryannis & Sahar Validi & Samir Dani & Grigoris Antoniou, 2019. "Supply chain risk management and artificial intelligence: state of the art and future research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2179-2202, April.
    16. Hussain, Matloub & Papastathopoulos, Avraam, 2022. "Organizational readiness for digital financial innovation and financial resilience," International Journal of Production Economics, Elsevier, vol. 243(C).
    17. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    18. Armstrong, J. Scott & Overton, Terry S., 1977. "Estimating Nonresponse Bias in Mail Surveys," MPRA Paper 81694, University Library of Munich, Germany.
    19. Choi, Tsan-Ming, 2019. "Blockchain-technology-supported platforms for diamond authentication and certification in luxury supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 17-29.
    20. Sven-Vegard Buer & Jan Ola Strandhagen & Felix T. S. Chan, 2018. "The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2924-2940, April.
    21. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    22. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    23. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    24. WUTTKE, David A & BLOME, Constantin & HENKE, Michael, 2013. "Focusing the financial flow of supply chains: an empirical investigation of financial supply chain management," LIDAM Reprints CORE 2601, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    25. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    26. Yu, Wantao & Jacobs, Mark A. & Chavez, Roberto & Yang, Jiehui, 2019. "Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective," International Journal of Production Economics, Elsevier, vol. 218(C), pages 352-362.
    27. Choi, Tsan-Ming & Guo, Shu & Luo, Suyuan, 2020. "When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    28. Tsan-Ming Choi, 2021. "Creating all-win by blockchain technology in supply chains: Impacts of agents’ risk attitudes towards cryptocurrency," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(11), pages 2580-2595, November.
    29. Gunasekaran, A. & Ngai, E. W. T., 2004. "Information systems in supply chain integration and management," European Journal of Operational Research, Elsevier, vol. 159(2), pages 269-295, December.
    30. Kshetri, Nir, 2018. "1 Blockchain’s roles in meeting key supply chain management objectives," International Journal of Information Management, Elsevier, vol. 39(C), pages 80-89.
    31. Giada Di Stefano & Margaret Peteraf & Gianmario Verona, 2014. "The Organizational Drivetrain: A Road To Integration of Dynamic Capabilities Research," Post-Print hal-01147194, HAL.
    32. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    33. Choi, Tsan-Ming & Luo, Suyuan, 2019. "Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 139-152.
    34. Comelli, Mickael & Féniès, Pierre & Tchernev, Nikolay, 2008. "A combined financial and physical flows evaluation for logistic process and tactical production planning: Application in a company supply chain," International Journal of Production Economics, Elsevier, vol. 112(1), pages 77-95, March.
    35. David J. Teece, 2012. "Dynamic Capabilities: Routines versus Entrepreneurial Action," Journal of Management Studies, Wiley Blackwell, vol. 49(8), pages 1395-1401, December.
    36. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    37. Kim Hua Tan & Guojun Ji & Chee Peng Lim & Ming-Lang Tseng, 2017. "Using big data to make better decisions in the digital economy," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 4998-5000, September.
    38. Hubert Pun & Jayashankar M. Swaminathan & Pengwen Hou, 2021. "Blockchain Adoption for Combating Deceptive Counterfeits," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 864-882, April.
    39. Shaker A. Zahra & Harry J. Sapienza & Per Davidsson, 2006. "Entrepreneurship and Dynamic Capabilities: A Review, Model and Research Agenda," Journal of Management Studies, Wiley Blackwell, vol. 43(4), pages 917-955, June.
    40. Henry M. Kim & Marek Laskowski, 2018. "Toward an ontology‐driven blockchain design for supply‐chain provenance," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(1), pages 18-27, January.
    41. Craig R. Carter & Dale S. Rogers & Thomas Y. Choi, 2015. "Toward the Theory of the Supply Chain," Journal of Supply Chain Management, Institute for Supply Management, vol. 51(2), pages 89-97, April.
    42. Jafar Namdar & Xueping Li & Rupy Sawhney & Ninad Pradhan, 2018. "Supply chain resilience for single and multiple sourcing in the presence of disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(6), pages 2339-2360, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Miaomiao & Wu, Jun & Chen, Xinyu & Zhu, Xiaoxi, 2023. "Grandfathering or benchmarking? The performance of implementing blockchain technology in a low-carbon supply chain," Energy, Elsevier, vol. 284(C).
    2. Chauhan, Ruchi & Majumder, Arunava & Kumar, Varun, 2023. "The impact of adopting customization policy and sustainability for improving consumer service in a dual-channel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    2. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Liu, Shuai & Hua, Guowei & Kang, Yuxuan & Edwin Cheng, T.C. & Xu, Yadong, 2022. "What value does blockchain bring to the imported fresh food supply chain?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    4. Zhang, Tianyu & Dong, Peiwu & Chen, Xiangfeng & Gong, Yu, 2023. "The impacts of blockchain adoption on a dual-channel supply chain with risk-averse members," Omega, Elsevier, vol. 114(C).
    5. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    6. Dubey, Rameshwar & Bryde, David J. & Dwivedi, Yogesh K. & Graham, Gary & Foropon, Cyril & Papadopoulos, Thanos, 2023. "Dynamic digital capabilities and supply chain resilience: The role of government effectiveness," International Journal of Production Economics, Elsevier, vol. 258(C).
    7. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    8. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2022. "Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains," Operations Management Research, Springer, vol. 15(1), pages 268-281, June.
    9. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    10. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    11. Wamba, Samuel Fosso & Dubey, Rameshwar & Gunasekaran, Angappa & Akter, Shahriar, 2020. "The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism," International Journal of Production Economics, Elsevier, vol. 222(C).
    12. Li, Guo & Xue, Jing & Li, Na & Ivanov, Dmitry, 2022. "Blockchain-supported business model design, supply chain resilience, and firm performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    13. Li, Qingying & Ma, Manqiong & Shi, Tianqin & Zhu, Chen, 2022. "Green investment in a sustainable supply chain: The role of blockchain and fairness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. Zhu, Shichao & Li, Jian & Wang, Shouyang & Xia, Yusen & Wang, Yajing, 2023. "The role of blockchain technology in the dual-channel supply chain dominated by a brand owner," International Journal of Production Economics, Elsevier, vol. 258(C).
    15. Wohlgemuth, Veit & Wenzel, Matthias & Berger, Elisabeth S.C. & Eisend, Martin, 2019. "Dynamic capabilities and employee participation: The role of trust and informal control," European Management Journal, Elsevier, vol. 37(6), pages 760-771.
    16. Soumyadeb Chowdhury & Oscar Rodriguez-Espindola & Prasanta Dey & Pawan Budhwar, 2023. "Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK," Annals of Operations Research, Springer, vol. 327(1), pages 539-574, August.
    17. Zhang, Xuefeng & Li, Zhe & Li, Guo, 2023. "Impacts of blockchain-based digital transition on cold supply chains with a third-party logistics service provider," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    18. Betto, Frida & Garengo, Patrizia, 2023. "A circular pathway for developing resilience in healthcare during pandemics," International Journal of Production Economics, Elsevier, vol. 266(C).
    19. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    20. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:261:y:2023:i:c:s0925527323001007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.