IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v667y2025ics0378437125002067.html
   My bibliography  Save this article

A unified traffic flow prediction model considering node differences, spatio-temporal features, and local-global dynamics

Author

Listed:
  • Shang, Qian
  • Zhang, Qingyong
  • Ju, Chao
  • Zhou, Quan
  • Yang, Zhihui

Abstract

Traffic flow prediction is one of the core technologies in Intelligent Transportation Systems (ITS) and has extensive application value. The primary challenge lies in efficiently modeling the complex spatio-temporal dependencies within traffic data. Although spatio-temporal graph neural network models are regarded as effective solutions, their performance is limited by incomplete graph connectivity and the use of identical modeling approaches for all nodes, which not only hinders the learning of dynamic traffic patterns but also overlooks the heterogeneity between nodes. To address these limitations, a novel traffic flow prediction model based on dynamic spatio-temporal modeling with node differences is proposed. Specifically, an exogenous node selection module is designed to identify nodes highly correlated with the endogenous node (i.e., the node to be predicted) to assist in prediction. Subsequently, differentiated modeling approaches are employed: the endogenous node is represented using local–global embedding to capture its local–global features. In contrast, exogenous nodes are modeled using global embedding to obtain their global representations, thereby achieving comprehensive feature characterization. Finally, a spatio-temporal attention network is utilized to capture the spatio-temporal interactions among nodes. Extensive experiments on three real-world traffic datasets demonstrate that the proposed model achieves significant performance improvements over state-of-the-art baseline methods. The experimental results reveal that the proposed framework not only achieves superior predictive accuracy but also maintains highly competitive computational efficiency.

Suggested Citation

  • Shang, Qian & Zhang, Qingyong & Ju, Chao & Zhou, Quan & Yang, Zhihui, 2025. "A unified traffic flow prediction model considering node differences, spatio-temporal features, and local-global dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 667(C).
  • Handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125002067
    DOI: 10.1016/j.physa.2025.130554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002067
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Naheliya, Bharti & Redhu, Poonam & Kumar, Kranti, 2024. "MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huan & Liu, Tao & Liu, Wang & Zhou, Jianzhao & Zhang, Quanguo & Ren, Jingzheng, 2025. "An interpretable deep learning framework for photofermentation biological hydrogen production and process optimization," Energy, Elsevier, vol. 322(C).
    2. Song, Yuxin & Duan, Huiming & Cheng, Yunlong, 2024. "A novel fractional-order grey Euler prediction model and its application in short-term traffic flow," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    3. Shubham Mehta & Raveena Dangi & Vikash Siwach & Poonam Redhu, 2025. "Effect of weather’s visibility on traffic dynamics: a novel lattice hydrodynamic model for curved roads with passing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(1), pages 1-9, January.
    4. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    6. Yan Zheng & Chunjiao Dong & Daiyue Dong & Shengyou Wang, 2021. "Traffic Volume Prediction: A Fusion Deep Learning Model Considering Spatial–Temporal Correlation," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    7. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
    8. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Ma, Changxi & Liu, Tao, 2024. "Demand forecasting of shared bicycles based on combined deep learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    11. Gyana Ranjan Patra & Mihir Narayan Mohanty, 2023. "Price Prediction of Cryptocurrency Using a Multi-Layer Gated Recurrent Unit Network with Multi Features," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1525-1544, December.
    12. Zheng, Yan & Wang, Shengyou & Dong, Chunjiao & Li, Wenquan & Zheng, Wen & Yu, Jingcai, 2022. "Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    13. Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).
    14. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    15. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    16. Yang, Di & Li, Hong & Wang, Peng & Yuan, Lihong, 2024. "Multistep traffic speed prediction: A sequence-to-sequence spatio-temporal attention model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    17. Liu, Bingchun & Song, Chengyuan & Wang, Qingshan & Zhang, Xinming & Chen, Jiali, 2022. "Research on regional differences of China's new energy vehicles promotion policies: A perspective of sales volume forecasting," Energy, Elsevier, vol. 248(C).
    18. Li, Baozhu & Lv, Xiaotian & Chen, Jiaxin, 2024. "Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model," Renewable Energy, Elsevier, vol. 220(C).
    19. Tian, Jing & Song, Xianmin & Tao, Pengfei & Liang, Jiahui, 2022. "Pattern-adaptive generative adversarial network with sparse data for traffic state estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    20. Xie, Derong & Chen, Hongli & Duan, Huiming, 2024. "A dynamic multivariate partial grey model based on the traffic flow parameter equation and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125002067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.