IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v193y2024ics1364032124000078.html
   My bibliography  Save this article

A systematic review and comprehensive analysis of building occupancy prediction

Author

Listed:
  • Li, Tao
  • Liu, Xiangyu
  • Li, Guannan
  • Wang, Xing
  • Ma, Jiangqiaoyu
  • Xu, Chengliang
  • Mao, Qianjun

Abstract

Buildings account for a significant portion of the global energy consumption. Forecasting personnel occupancy is critical for reducing energy consumption in buildings. This study explored the general process of building occupancy prediction models, and specifically analyzed the evolution and application of various data collection methods and predictive algorithms. A comprehensive research framework is established. The main findings indicate that prediction accuracy can be substantially improved by leveraging the Internet of Things technology to enhance data collection and employing hybrid machine learning algorithms. These advancements are vital to optimize building operation strategies, reduce energy consumption, and minimize carbon dioxide emissions. Additionally, the assessment metrics for validating predictive models are discussed and a novel idea based on integrated selection methods is presented. Differing from existing research, this study explores data collection methods and predictive algorithms from a broader perspective, also examining their interplay. Finally, potential directions for further development and improvement in the field are identified. The findings emphasize the necessity to continually innovate in data collection and algorithm development to meet evolving environmental needs and sustainability goals. New insights for engineering design and energy system optimization are offered.

Suggested Citation

  • Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032124000078
    DOI: 10.1016/j.rser.2024.114284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:193:y:2024:i:c:s1364032124000078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.