IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1526-d1615915.html
   My bibliography  Save this article

HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests

Author

Listed:
  • Diana D’Agostino

    (Department of Industrial Engineering, University of Naples Federico II, P.le Vincenzo Tecchio 80, 80125 Naples, Italy)

  • Federico Minelli

    (Department of Industrial Engineering, University of Naples Federico II, P.le Vincenzo Tecchio 80, 80125 Naples, Italy)

  • Francesco Minichiello

    (Department of Industrial Engineering, University of Naples Federico II, P.le Vincenzo Tecchio 80, 80125 Naples, Italy)

Abstract

The operation of Heating Ventilation and Air Conditioning (HVAC) systems in densely occupied spaces results in considerable energy consumption. In the post-pandemic context, stricter indoor air quality standards and higher ventilation rates further increase energy demand. In this paper, the energy retrofit of a partial recirculation all-air HVAC system serving a university lecture room located in Southern Italy is analyzed. Multi-Objective Optimization (MOO) and Multi-Criteria Decision-Making (MCDM) approaches are used to find optimal design alternatives and rank these considering two different decision-makers, i.e., public and private stakeholders. Among the Pareto solutions obtained from optimization, the optimal alternative is identified, encompassing three Key Performance Indicators and using a new robust MCDM approach based on four methods, i.e., TOPSIS, VIKOR, WASPAS, and MULTIMOORA. The results show that, in the post-pandemic era, baseline retrofit scenarios for infection reduction that do not involve the introduction of demand control ventilation strategies cause energy consumption to increase from negligible values up to 59%. On the contrary, baseline retrofit scenarios involving demand control ventilation strategies cause energy consumption to decrease between 5% and 38%. The findings offer valuable guidance for HVAC system retrofits in higher education and similar buildings, emphasizing the potential to balance occupant health, energy efficiency, and cost reduction. The results also highlight significant CO 2 reductions and minimal impacts on thermal comfort, showcasing the potential for substantial energy savings through targeted retrofits.

Suggested Citation

  • Diana D’Agostino & Federico Minelli & Francesco Minichiello, 2025. "HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests," Energies, MDPI, vol. 18(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1526-:d:1615915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    2. Chika Maduabuchi & Chinedu Nsude & Chibuoke Eneh & Emmanuel Eke & Kingsley Okoli & Emmanuel Okpara & Christian Idogho & Bryan Waya & Catur Harsito, 2023. "Renewable Energy Potential Estimation Using Climatic-Weather-Forecasting Machine Learning Algorithms," Energies, MDPI, vol. 16(4), pages 1-20, February.
    3. Elmalky, Adham M. & Araji, Mohamad T., 2023. "Multi-objective problem of optimizing heat transfer and energy production in algal bioreactive façades," Energy, Elsevier, vol. 268(C).
    4. Mohammadi, Majid & Rezaei, Jafar, 2020. "Ensemble ranking: Aggregation of rankings produced by different multi-criteria decision-making methods," Omega, Elsevier, vol. 96(C).
    5. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Panagiotis Michailidis & Iakovos Michailidis & Socratis Gkelios & Elias Kosmatopoulos, 2024. "Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions," Energies, MDPI, vol. 17(3), pages 1-47, January.
    7. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.
    8. Manfren, Massimiliano & Nastasi, Benedetto & Tronchin, Lamberto & Groppi, Daniele & Garcia, Davide Astiaso, 2021. "Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. D'Agostino, Diana & De Falco, Francesco & Minelli, Federico & Minichiello, Francesco, 2024. "New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests," Applied Energy, Elsevier, vol. 376(PA).
    10. Willem Karel M. Brauers & Romualdas Ginevičius, 2009. "Robustness in regional development studies. The case of Lithuania," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(2), pages 121-140, February.
    11. Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Agostino, Diana & De Falco, Francesco & Minelli, Federico & Minichiello, Francesco, 2024. "New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests," Applied Energy, Elsevier, vol. 376(PA).
    2. Panagiotis Michailidis & Iakovos Michailidis & Elias Kosmatopoulos, 2025. "Reinforcement Learning for Optimizing Renewable Energy Utilization in Buildings: A Review on Applications and Innovations," Energies, MDPI, vol. 18(7), pages 1-40, March.
    3. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    4. Temitope Omotayo & Alireza Moghayedi & Bankole Awuzie & Saheed Ajayi, 2021. "Infrastructure Elements for Smart Campuses: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
    5. Wang, Qun & Jia, Guozhu & Song, Wenyan, 2022. "Identifying critical factors in systems with interrelated components: A method considering heterogeneous influence and strength attenuation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 456-470.
    6. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Amin Mahmoudi & Saad Ahmed Javed, 2022. "Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 1051-1096, October.
    8. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    9. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Liu, Xiangyu & Li, Tao & Ma, Jiangqiaoyu & Wu, Pinguo & Li, Yang & Chen, Min & Li, Guannan & Mao, Qianjun, 2024. "Correlation analysis of occupancy and air-conditioning behavior of different offices based on a large-scale survey in HSCW zone of China," Energy, Elsevier, vol. 311(C).
    11. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    13. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    14. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    15. Romualdas Ginevičius & Dainora Gedvilaite & Šarunas Bruzge, 2015. "Assessment of a Country’s Regional Economic Development on the Basis of Estimation of a Single Process (ESP) Method," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 3(2), pages 141-153.
    16. Gülçin Canbulut & Erkan Köse & Oğuzhan Ahmet Arik, 2022. "Public transportation vehicle selection by the grey relational analysis method," Public Transport, Springer, vol. 14(2), pages 367-384, June.
    17. Juin-Hao Ho & Gwo-Guang Lee & Ming-Tsang Lu, 2020. "Exploring the Implementation of a Legal AI Bot for Sustainable Development in Legal Advisory Institutions," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    18. Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
    19. Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
    20. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1526-:d:1615915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.