Author
Listed:
- Ruili Liu
(College of Architecture, Henan University of Technology, Zhengzhou 450001, China)
- Zhu He
(College of Architecture, Henan University of Technology, Zhengzhou 450001, China)
- Chengzhou Guo
(College of Architecture, Henan University of Technology, Zhengzhou 450001, China
Henan University of Technology Design and Research Co., Ltd., Zhengzhou 450001, China)
- Haitao Wang
(College of Architecture, Henan University of Technology, Zhengzhou 450001, China)
Abstract
The use of thermal insulation material in building envelopes is closely related to economic benefits, energy-savings, and carbon reduction of buildings. The construction forms of different components in building envelopes have an important influence on the optimization design of thermal insulation in building envelopes. In this study, an integrated optimization approach is proposed to search for the best solution of thermal insulation in external walls and the optimal combination scheme of different construction forms of envelope components in granaries. The integrated optimization approach consists of an orthogonal experimental design (OEDM) method-based determination module of an optimal combination scheme of different construction forms of components, an assessment model-based quantitative analysis module, and an integrated assessment indicator-based selection module of the best solution of external wall insulation. Firstly, the OEDM method is used to determine the optimal combination scheme of different construction forms of the foundation wall of an external wall, thermal insulation material, external window, roof, and floors in buildings. Secondly, integrated economic, energy, and carbon analysis models are developed to analyze comprehensive performance of external wall insulation. Finally, an integrated assessment indicator consisting of an energy balanced index, a carbon balanced index, and weight coefficients is presented to determine the best solution of external wall insulation. The applications of this optimization approach in different ecological grain storage zones in China demonstrated that the outdoor air temperature characteristics could affect the comprehensive performance of external wall insulation in granaries, significantly. The best solution of external wall insulation in granaries in Turpan city, Daqing city, Kaifeng city, Changsha city, Anshun city, and Danzhou city was expanded polystyrene insulation (EPS) with a layer thickness of 0.078 m, 0.048 m, 0.083 m, 0.089 m, 0.062 m, and 0.131 m, respectively. The greatest difference in the lowest entire construction cost and the lowest carbon emission of external wall insulation among different typical climate regions in China was 12.987 USD/m 2 and 6.3 kgCO2e/m 2 , respectively.
Suggested Citation
Ruili Liu & Zhu He & Chengzhou Guo & Haitao Wang, 2025.
"Integrated Optimization Method of External Wall Insulation for Granaries in Different Climate Regions in China,"
Sustainability, MDPI, vol. 17(16), pages 1-20, August.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:16:p:7489-:d:1727645
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7489-:d:1727645. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.