IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10310-1.html
   My bibliography  Save this article

Price Prediction of Cryptocurrency Using a Multi-Layer Gated Recurrent Unit Network with Multi Features

Author

Listed:
  • Gyana Ranjan Patra

    (Siksha ‘O’ Anusandhan (Deemed to Be University))

  • Mihir Narayan Mohanty

    (Siksha ‘O’ Anusandhan (Deemed to Be University))

Abstract

In today’s world the cryptocurrencies have taken a special place in the financial market with the aid of time series forecasting and with a market value of almost USD 1.5 Trillion as of August 2021. These financial commodities show more volatility and effect of different internal and external forces. The prediction of such cryptocurrencies is a time consuming and difficult affair. In this paper, an attempt is made with a multilayer Gated Recurrent Unit based model for price prediction of cryptocurrencies. The currencies considered in this work are Bitcoin, Ethereum and Dogecoin and are pre-processed to deal with the NaN values. The LSTM model, one variant of recurrent neural network is used initially for predication. Further, the Gated Recurrent Unit is used with single feature. However, it is observed that for multiple features with three layers of Gated Recurrent Units based model is working well with error minimization. The performance of the proposed model is compared with other two models over a 21-day forecasting window. The proposed model is found to provide better performance in terms of different parameters like mean square error, root mean square error, mean absolute error, mean absolute percentage error, p-value, and precision values than the other two models.

Suggested Citation

  • Gyana Ranjan Patra & Mihir Narayan Mohanty, 2023. "Price Prediction of Cryptocurrency Using a Multi-Layer Gated Recurrent Unit Network with Multi Features," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1525-1544, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10310-1
    DOI: 10.1007/s10614-022-10310-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10310-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10310-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takuya Shintate & Lukáš Pichl, 2019. "Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning," JRFM, MDPI, vol. 12(1), pages 1-15, January.
    2. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    3. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    4. Ting-Hsuan Chen & Mu-Yen Chen & Guan-Ting Du, 2021. "The Determinants of Bitcoin’s Price: Utilization of GARCH and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 267-280, January.
    5. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    6. Kaiser, Lars, 2019. "Seasonality in cryptocurrencies," Finance Research Letters, Elsevier, vol. 31(C).
    7. Jin-Bom Han & Sun-Hak Kim & Myong-Hun Jang & Kum-Sun Ri, 2020. "Using Genetic Algorithm and NARX Neural Network to Forecast Daily Bitcoin Price," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 337-353, August.
    8. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    9. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    10. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    11. Albert S. Hu & Christine A. Parlour & Uday Rajan, 2019. "Cryptocurrencies: Stylized facts on a new investible instrument," Financial Management, Financial Management Association International, vol. 48(4), pages 1049-1068, December.
    12. Nicola Uras & Lodovica Marchesi & Michele Marchesi & Roberto Tonelli, 2020. "Forecasting Bitcoin closing price series using linear regression and neural networks models," Papers 2001.01127, arXiv.org.
    13. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    14. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    4. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    5. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    6. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    7. Rehman, Mobeen Ur & Katsiampa, Paraskevi & Zeitun, Rami & Vo, Xuan Vinh, 2023. "Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies," Emerging Markets Review, Elsevier, vol. 55(C).
    8. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    9. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    10. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    11. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    12. Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
    13. Andrew Phiri, 2022. "Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin?," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 373-386, September.
    14. Akyildirim, Erdinc & Corbet, Shaen & Lucey, Brian & Sensoy, Ahmet & Yarovaya, Larisa, 2020. "The relationship between implied volatility and cryptocurrency returns," Finance Research Letters, Elsevier, vol. 33(C).
    15. Rudkin, Simon & Rudkin, Wanling & Dłotko, Paweł, 2023. "On the topology of cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
    16. Li, Yi & Urquhart, Andrew & Wang, Pengfei & Zhang, Wei, 2021. "MAX momentum in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    17. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    18. Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019. "A bibliometric analysis of bitcoin scientific production," Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
    19. Lai T. Hoang & Dirk G. Baur, 2020. "Forecasting bitcoin volatility: Evidence from the options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1584-1602, October.
    20. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10310-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.