IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008683.html
   My bibliography  Save this article

Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks

Author

Listed:
  • Hu, Guojing
  • Whalin, Robert W.
  • Kwembe, Tor A.
  • Lu, Weike

Abstract

Short-term traffic flow prediction is a significant and challenging research topic as it is closely related to the application of intelligent transportation systems. Due to the variable and random characteristics of the transportation system, raw traffic flow data often contain noise, and predicting the raw data directly may reduce the accuracy and effectiveness of the prediction models. Therefore, a hybrid method is established in this research which combines denoising schemes and deep learning models to improve the prediction accuracy. The time series denoising schemes include two parts: the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and wavelet packet decomposition (WPD). Firstly, the raw traffic flow data are decomposed by CEEMDAN to obtain intrinsic mode functions (IMFs) and a residual. Then the IMFs are divided into anti-persistent and persistent components through the Hurst Exponent index. The anti-persistent components are re-decomposed by the WPD algorithm, and persistent components are aggregated into one component. Finally, these components and residual are forecasted by the deep echo state network (DeepESN) model. In the experiment, to investigate the prediction performance of the proposed CEEMDAN-WPD123456–7a11-DeepESN model, the LSTM, CEEMDAN-LSTM, CEEMDAN-WPD-LSTM, DeepESN, CEEMDAN-DeepESN, CEEMDAN-WPD1-DeepESN, CEEMDAN-WPD123456-DeepESN and CEEMDAN-WPD1a6–7a11-DeepESN models are considered to be comparison models. The experimental results demonstrate that the proposed model has superior performance on both efficiency and accuracy.

Suggested Citation

  • Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008683
    DOI: 10.1016/j.physa.2023.129313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008683
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.