IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v63y2016icp44-53.html
   My bibliography  Save this article

Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations

Author

Listed:
  • Oishi, Takayuki
  • Nakayama, Mikio
  • Hokari, Toru
  • Funaki, Yukihiko

Abstract

In this paper, for each solution for TU games, we define its “dual” and “anti-dual”. Then, we apply these notions to axioms: two axioms are (anti-)dual to each other if whenever a solution satisfies one of them, its (anti-)dual satisfies the other. It turns out that these definitions allow us not only to organize existing axiomatizations of various solutions but also to find new axiomatizations of some solutions. As an illustration, we show that two well-known axiomatizations of the core are essentially equivalent in the sense that one can be derived from the other, and derive new axiomatizations of the Shapley value and the Dutta–Ray solution.

Suggested Citation

  • Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
  • Handle: RePEc:eee:mateco:v:63:y:2016:i:c:p:44-53
    DOI: 10.1016/j.jmateco.2015.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406815001597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2015.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    2. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    3. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    4. Kensaku Kikuta, 2007. "Twisted Dual Games And Their Properties," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 285-306.
    5. René van den Brink, 2002. "An axiomatization of the Shapley value using a fairness property," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(3), pages 309-319.
    6. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    7. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    8. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    9. André Casajus, 2011. "Differential marginality, van den Brink fairness, and the Shapley value," Theory and Decision, Springer, vol. 71(2), pages 163-174, August.
    10. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    11. Youngsub Chun & Boram Park, 2012. "Population solidarity, population fair-ranking, and the egalitarian value," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(2), pages 255-270, May.
    12. Gérard Hamiache, 2001. "Associated consistency and Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 279-289.
    13. Mitsuo Suzuki & Mikio Nakayama, 1976. "The Cost Assignment of the Cooperative Water Resource Development: A Game Theoretical Approach," Management Science, INFORMS, vol. 22(10), pages 1081-1086, June.
    14. Thomson, William & Yeh, Chun-Hsien, 2008. "Operators for the adjudication of conflicting claims," Journal of Economic Theory, Elsevier, vol. 143(1), pages 177-198, November.
    15. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    16. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    17. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Dutta, B, 1990. "The Egalitarian Solution and Reduced Game Properties in Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 153-169.
    19. Einy, Ezra, 1988. "The shapley value on some lattices of monotonic games," Mathematical Social Sciences, Elsevier, vol. 15(1), pages 1-10, February.
    20. (*), Gerard van der Laan & RenÊ van den Brink, 1998. "Axiomatizations of the normalized Banzhaf value and the Shapley value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 567-582.
    21. Hervé Moulin, 2000. "Priority Rules and Other Asymmetric Rationing Methods," Econometrica, Econometric Society, vol. 68(3), pages 643-684, May.
    22. Yan-An Hwang, 2006. "Associated consistency and equal allocation of nonseparable costs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 709-719, August.
    23. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    24. Tadenuma, K, 1992. "Reduced Games, Consistency, and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 325-334.
    25. Klijn, Flip & Slikker, Marco & Tijs, Stef & Zarzuelo, Jose, 2000. "The egalitarian solution for convex games: some characterizations," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 111-121, July.
    26. Herrero, Carmen & Villar, Antonio, 2001. "The three musketeers: four classical solutions to bankruptcy problems," Mathematical Social Sciences, Elsevier, vol. 42(3), pages 307-328, November.
    27. Ruiz, Luis M & Valenciano, Federico & Zarzuelo, Jose M, 1996. "The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 113-134.
    28. Neyman, Abraham, 1989. "Uniqueness of the Shapley value," Games and Economic Behavior, Elsevier, vol. 1(1), pages 116-118, March.
    29. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    30. Takayuki Oishi & Mikio Nakayama, 2009. "Anti‐Dual Of Economic Coalitional Tu Games," The Japanese Economic Review, Japanese Economic Association, vol. 60(4), pages 560-566, December.
    31. Peleg, B, 1987. "On the Reduced Game Property and Its Converse: A Correction," International Journal of Game Theory, Springer;Game Theory Society, vol. 16(4), pages 290-290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    2. Calleja, Pere & Llerena Garrés, Francesc, 2015. "On the (in)compatibility of rationality, monotonicity and consistency for cooperative games," Working Papers 2072/247807, Universitat Rovira i Virgili, Department of Economics.
    3. Pedro Calleja & Francesc Llerena, 2019. "Path monotonicity, consistency and axiomatizations of some weighted solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 287-310, March.
    4. Bas Dietzenbacher & Elena Yanovskaya, 2021. "Consistency of the equal split-off set," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 1-22, March.
    5. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    6. Llerena, Francesc & Mauri, Llúcia, 2017. "On the existence of the Dutta–Ray’s egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 92-99.
    7. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.
    8. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    9. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    10. Zou, Zhengxing & van den Brink, René & Funaki, Yukihiko, 2021. "Compromising between the proportional and equal division values," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    11. Camelia Bejan & Juan Camilo Gómez & Anne van den Nouweland, 2022. "On the importance of reduced games in axiomatizing core extensions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 637-668, October.
    12. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    13. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    14. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    15. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    16. Zhengxing Zou & Rene van den Brink & Yukihiko Funaki, 2020. "Compromising between the proportional and equal division values: axiomatization, consistency and implementation," Tinbergen Institute Discussion Papers 20-054/II, Tinbergen Institute.
    17. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
    18. Bas Dietzenbacher & Peter Sudhölter, 2022. "Hart–Mas-Colell consistency and the core in convex games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 413-429, June.
    19. Pérez-Castrillo, David & Sun, Chaoran, 2021. "Value-free reductions," Games and Economic Behavior, Elsevier, vol. 130(C), pages 543-568.
    20. C. Manuel & E. González-Arangüena & R. Brink, 2013. "Players indifferent to cooperate and characterizations of the Shapley value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:63:y:2016:i:c:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.