IDEAS home Printed from
   My bibliography  Save this paper

Consistency, Population Solidarity, and Egalitarian Solutions for TU-Games


  • Rene van den Brink

    (VU University Amsterdam)

  • Youngsub Chun

    (Seoul National University)

  • Yukihiko Funaki

    (Waseda University)

  • Boram Park

    (Rutgers University)


A (point-valued) solution for cooperative games with transferable utility, or simply TU-games, assigns a payoff vector to every TU-game. In this paper we discuss two classes of equal surplus sharing solutions, one consisting of all convex combinations of the equal division solution and the CIS-value, and its dual class consisting of all convex combinations of the equal division solution and the ENSC-value. We provide several characterizations using either population solidarity or a reduced game consistency in addition to other standard properties.

Suggested Citation

  • Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2012. "Consistency, Population Solidarity, and Egalitarian Solutions for TU-Games," Tinbergen Institute Discussion Papers 12-136/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20120136

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    2. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    3. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    4. Thomson, William, 1983. "Problems of fair division and the Egalitarian solution," Journal of Economic Theory, Elsevier, vol. 31(2), pages 211-226, December.
    5. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    6. Youngsub Chun & Boram Park, 2012. "Population solidarity, population fair-ranking, and the egalitarian value," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(2), pages 255-270, May.
    7. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    8. Sergiu Hart, 2006. "Shapley Value," Discussion Paper Series dp421, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Calleja, Pere & Llerena Garrés, Francesc, 2018. "Weak fairness and the Shapley value," Working Papers 2072/306979, Universitat Rovira i Virgili, Department of Economics.
    2. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    3. Valencia-Toledo, Alfredo & Vidal-Puga, Juan, 2017. "Duality in land rental problems," MPRA Paper 80509, University Library of Munich, Germany.
    4. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    5. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    6. Zhengxing Zou & Rene van den Brink & Youngsub Chun & Yukihiko Funaki, 2019. "Axiomatizations of the proportional division value," Tinbergen Institute Discussion Papers 19-072/II, Tinbergen Institute.
    7. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    8. Béal, Sylvain & Casajus, André & Huettner, Frank & Rémila, Eric & Solal, Philippe, 2014. "Solidarity within a fixed community," Economics Letters, Elsevier, vol. 125(3), pages 440-443.
    9. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.

    More about this item


    TU-game; equal division solution; CIS-value; ENSC-value; population solidarity; consistency;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20120136. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.