IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v47y2011i3p370-375.html
   My bibliography  Save this article

Manipulation in elections with uncertain preferences

Author

Listed:
  • McLennan, Andrew

Abstract

A decision scheme (Gibbard, 1977) maps profiles of strict preferences over a set of social alternatives to lotteries over the social alternatives. A decision scheme is weakly strategy-proof if it is never possible for a voter to increase expected utility (for some vNM utility function consistent with her ordinal preferences) by misrepresenting her preferences when her belief about the preferences of other voters is generated by a model in which the other voters are i.i.d. draws from a distribution over possible preferences. We show that if there are at least three alternatives, a decision scheme is necessarily a random dictatorship if it is weakly strategy-proof, never assigns positive probability to Pareto dominated alternatives, and is anonymous in the sense of being unaffected by permutations of the components of the profile.

Suggested Citation

  • McLennan, Andrew, 2011. "Manipulation in elections with uncertain preferences," Journal of Mathematical Economics, Elsevier, vol. 47(3), pages 370-375.
  • Handle: RePEc:eee:mateco:v:47:y:2011:i:3:p:370-375
    DOI: 10.1016/j.jmateco.2010.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406811000176
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roth,Alvin E. & Sotomayor,Marilda A. Oliveira, 1992. "Two-Sided Matching," Cambridge Books, Cambridge University Press, number 9780521437882, May.
    2. Myerson, Roger B., 1998. "Extended Poisson Games and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 25(1), pages 111-131, October.
    3. Roger B. Myerson, 1998. "Population uncertainty and Poisson games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 375-392.
    4. Eric Maskin, 1999. "Nash Equilibrium and Welfare Optimality," Review of Economic Studies, Oxford University Press, vol. 66(1), pages 23-38.
    5. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    6. Myerson, Roger B., 2002. "Comparison of Scoring Rules in Poisson Voting Games," Journal of Economic Theory, Elsevier, vol. 103(1), pages 219-251, March.
    7. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    8. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.
    2. Matías Núñez, 2014. "The strategic sincerity of Approval voting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(1), pages 157-189, May.
    3. Orestis Troumpounis & Dimitrios Xefteris, 2016. "Incomplete information, proportional representation and strategic voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(4), pages 879-903, December.
    4. De Sinopoli, Francesco & Meroni, Claudia & Pimienta, Carlos, 2014. "Strategic stability in Poisson games," Journal of Economic Theory, Elsevier, vol. 153(C), pages 46-63.
    5. Matías Núñez & Marcus Pivato, 2016. "Truth-revealing voting rules for large populations ," Working Papers hal-01340317, HAL.
    6. Jean-François Laslier & Jörgen Weibull, 2008. "Committee decisions: Optimality and Equilibrium," Working Papers halshs-00121741, HAL.

    More about this item

    Keywords

    Gibbard–Satterthwaite theorem; Strategy-proof; Manipulation; Voting; Elections;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:47:y:2011:i:3:p:370-375. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.