IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Manipulation in Elections with Uncertain Preferences

A decision scheme (Gibbard (1977)) is a function mapping profiles of strict preferences over a set of social alternatives to lotteries over the social alternatives. Motivated by conditions typically prevailing in elections with many voters, we say that a decision scheme is weakly strategy-proof if it is never possible for a voter to increase expected utility (for some vNM utility function consistent with her true preferences) by misrepresenting her preferences when her belief about the preferences of other voters is generated by a model in which the other voters are i.i.d. draws from a distribution over possible preferences. We show that if there are at least three alternatives, a decision scheme is necessarily a random dictatorship if it is weakly strategy-proof, never assigns positive probability to Pareto dominated alternatives, and is anonymous in the sense of being unaffected by permutations of the components of the profile. This result is established in two settings- a) a model with a fixed set of voters; b) the Poisson voting model of Meyerson (1998a,b, 2000, 2002).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by School of Economics, University of Queensland, Australia in its series Discussion Papers Series with number 360.

in new window

Date of creation: 2008
Date of revision:
Handle: RePEc:qld:uq2004:360
Contact details of provider: Postal: St. Lucia, Qld. 4072
Phone: +61 7 3365 6570
Fax: +61 7 3365 7299
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
  2. Roger B. Myerson, 1998. "Comparison of Scoring Rules in Poisson Voting Games," Discussion Papers 1214, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  3. Roth, Alvin E. & Sotomayor, Marilda, 1992. "Two-sided matching," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 16, pages 485-541 Elsevier.
  4. Maskin, Eric, 1999. "Nash Equilibrium and Welfare Optimality," Review of Economic Studies, Wiley Blackwell, vol. 66(1), pages 23-38, January.
  5. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-81, April.
  6. Myerson, Roger B., 1998. "Extended Poisson Games and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 25(1), pages 111-131, October.
  7. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
  8. Roger B. Myerson, 1994. "Population Uncertainty and Poisson Games," Discussion Papers 1102, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qld:uq2004:360. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SOE IT)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.