IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.15310.html
   My bibliography  Save this paper

Self-Equivalent Voting Rules

Author

Listed:
  • H'ector Hermida-Rivera

Abstract

In this paper, I introduce a novel stability axiom for stochastic voting rules, called self-equivalence, by which a society considering whether to replace its voting rule using itself will choose not do so. I then show that under the unrestricted strict preference domain, a voting rule satisfying the democratic principles of anonymity, optimality, monotonicity, and neutrality is self-equivalent if and only if it assigns to every voter equal probability of being a dictator (i.e., uniform random dictatorship). Thus, any society that desires stability and adheres to the aforementioned democratic principles is bound to either employ the uniform random dictatorship or decide whether to change its voting rule using a voting rule other than itself.

Suggested Citation

  • H'ector Hermida-Rivera, 2025. "Self-Equivalent Voting Rules," Papers 2506.15310, arXiv.org.
  • Handle: RePEc:arx:papers:2506.15310
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.15310
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Héctor Hermida‐Rivera & Toygar T. Kerman, 2025. "Binary Self‐Selective Voting Rules," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 27(3), June.
    2. Jean Lainé & Ali Ozkes & Remzi Sanver, 2016. "Hyper-stable social welfare functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 157-182, January.
    3. Diss, Mostapha & Louichi, Ahmed & Merlin, Vincent & Smaoui, Hatem, 2012. "An example of probability computations under the IAC assumption: The stability of scoring rules," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 57-66.
    4. Mihir Bhattacharya, 2019. "Constitutionally consistent voting rules over single-peaked domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 225-246, February.
    5. Mostapha Diss, 2015. "Strategic manipulability of self-selective social choice rules," Annals of Operations Research, Springer, vol. 229(1), pages 347-376, June.
    6. Ozkes, Ali I. & Sanver, M. Remzi, 2023. "Uniform random dictatorship: A characterization without strategy-proofness," Economics Letters, Elsevier, vol. 227(C).
    7. Gibbard, Allan, 1978. "Straightforwardness of Game Forms with Lotteries as Outcomes," Econometrica, Econometric Society, vol. 46(3), pages 595-614, May.
    8. Semih Koray & Talat Senocak, 2024. "Selection closedness and scoring correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 179-202, August.
    9. Eric Maskin, 1999. "Nash Equilibrium and Welfare Optimality," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(1), pages 23-38.
    10. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    11. H'ector Hermida-Rivera & Toygar T. Kerman, 2025. "Binary Self-Selective Voting Rules," Papers 2506.15265, arXiv.org.
    12. Mostapha Diss & Vincent Merlin, 2010. "On the stability of a triplet of scoring rules," Theory and Decision, Springer, vol. 69(2), pages 289-316, August.
    13. Semih Koray & Bulent Unel, 2003. "Characterization of self-selective social choice functions on the tops-only domain," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 20(3), pages 495-507, June.
    14. Semih Koray & Arkadii Slinko, 2008. "Self-selective social choice functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(1), pages 129-149, June.
    15. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    16. Jean Lainé & Ali Ozkes & Remzi Sanver, 2016. "Hyper-stable social welfare functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 157-182, January.
    17. Semih Koray, 2000. "Self-Selective Social Choice Functions Verify Arrow and Gibbarad- Satterthwaite Theorems," Econometrica, Econometric Society, vol. 68(4), pages 981-996, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H'ector Hermida-Rivera & Toygar T. Kerman, 2025. "Binary Self-Selective Voting Rules," Papers 2506.15265, arXiv.org.
    2. Mihir Bhattacharya, 2019. "Constitutionally consistent voting rules over single-peaked domains," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 225-246, February.
    3. Mostapha Diss, 2015. "Strategic manipulability of self-selective social choice rules," Annals of Operations Research, Springer, vol. 229(1), pages 347-376, June.
    4. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    5. Jean Lainé & Ali Ozkes & Remzi Sanver, 2016. "Hyper-stable social welfare functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 157-182, January.
    6. McLennan, Andrew, 2011. "Manipulation in elections with uncertain preferences," Journal of Mathematical Economics, Elsevier, vol. 47(3), pages 370-375.
    7. Bhaskar Dutta & Hans Peters & Arunava Sen, 2008. "Strategy-proof cardinal decision schemes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(4), pages 701-702, May.
    8. Mukherjee, Saptarshi & Muto, Nozomu & Ramaekers, Eve & Sen, Arunava, 2019. "Implementation in undominated strategies by bounded mechanisms: The Pareto correspondence and a generalization," Journal of Economic Theory, Elsevier, vol. 180(C), pages 229-243.
    9. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    10. Lok, R.B. & Romero Morales, D. & Vermeulen, A.J., 2005. "The agents-are-substitutes property in continuous generalized assignment problems," Research Memorandum 009, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Maus, Stefan & Peters, Hans & Storcken, Ton, 2007. "Anonymous voting and minimal manipulability," Journal of Economic Theory, Elsevier, vol. 135(1), pages 533-544, July.
    12. Matthew O. Jackson, 2001. "A crash course in implementation theory," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(4), pages 655-708.
    13. Liad Wagman & Vincent Conitzer, 2014. "False-name-proof voting with costs over two alternatives," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 599-618, August.
    14. Bochet, Olivier & Sakai, Toyotaka, 2007. "Strategic manipulations of multi-valued solutions in economies with indivisibilities," Mathematical Social Sciences, Elsevier, vol. 53(1), pages 53-68, January.
    15. Diss, Mostapha & Louichi, Ahmed & Merlin, Vincent & Smaoui, Hatem, 2012. "An example of probability computations under the IAC assumption: The stability of scoring rules," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 57-66.
    16. Gilbert Laffond & Jean Lainé & M. Remzi Sanver, 2020. "Metrizable preferences over preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 177-191, June.
    17. Lê Nguyên Hoang, 2017. "Strategy-proofness of the randomized Condorcet voting system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(3), pages 679-701, March.
    18. Bochet, O.L.A. & Storcken, A.J.A., 2006. "Maximal domains for strategy-proof or Maskin monotonic choice rules," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Shurojit Chatterji & Arunava Sen, 2022. "Mechanism design by observant and informed planners," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 665-677, December.
    20. Arkarup Basu Mallik & Mihir Bhattacharya, 2025. "Consistency and social choice," Working Papers 142, Ashoka University, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.15310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.