IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

On the computation of stable sets for bimatrix games

  • Vermeulen, Dries
  • Jansen, Mathijs

In this paper it is shown how to compute stable sets, defined by Mertens (1989), inthe context of bimatrix games only using linear optimization techniques.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 41 (2005)
Issue (Month): 6 (September)
Pages: 735-763

in new window

Handle: RePEc:eee:mateco:v:41:y:2005:i:6:p:735-763
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Vermeulen, A. J. & Jansen, M. J. M., 2000. "Ordinality of solutions of noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 13-34, February.
  2. Mathijs Jansen & Dries Vermeulen, 2001. "On the computation of stable sets and strictly perfect equilibria," Economic Theory, Springer, vol. 17(2), pages 325-344.
  3. Jansen, M.J.M. & Jurg, A.P. & Borm, P.E.M., 1994. "On strictly perfect sets," Other publications TiSEM 77ebc80c-ac78-43a0-808b-6, Tilburg University, School of Economics and Management.
  4. E. Kohlberg & J.-F. Mertens, 1998. "On the Strategic Stability of Equilibria," Levine's Working Paper Archive 445, David K. Levine.
  5. Srihari Govindan & Robert Wilson, 2002. "Maximal stable sets of two-player games," International Journal of Game Theory, Springer, vol. 30(4), pages 557-566.
  6. Talman, A.J.J. & van den Elzen, A.H., 1991. "A procedure for finding Nash equilibria in bi-matrix games," Other publications TiSEM 14df3398-1521-43ad-8803-a, Tilburg University, School of Economics and Management.
  7. Vermeulen Dries & Jansen Mathijs, 2004. "On the computation of stable sets for bimatrix games," Research Memorandum 020, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  8. Lawrence E. Blume & William R. Zame, 1993. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Game Theory and Information 9309001, EconWPA.
  9. Wilson, Robert, 1992. "Computing Simply Stable Equilibria," Econometrica, Econometric Society, vol. 60(5), pages 1039-70, September.
  10. John Hillas & Dries Vermeulen & Mathijs Jansen, 1996. "On the Finiteness of Stable Sets," Game Theory and Information 9605003, EconWPA, revised 15 Jun 1996.
  11. Talman, A.J.J. & Yang, Z., 1994. "A simplicial algorithm for computing proper Nash equilibria of finite games," Discussion Paper 1994-18, Tilburg University, Center for Economic Research.
  12. Hillas, John, 1990. "On the Definition of the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 58(6), pages 1365-90, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:41:y:2005:i:6:p:735-763. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.