IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v85y2023ipbs030142072300644x.html
   My bibliography  Save this article

Role of oil shocks in US stock market volatility: A new insight from GARCH-MIDAS perspective

Author

Listed:
  • Ghani, Usman
  • Zhu, Bo
  • Ghani, Maria
  • Khan, Nasir
  • khan, Raja Danish Akbar

Abstract

For both local and foreign investors, the equity market and oil price shocks have massive repercussions. In this research, we examine the essential role of the oil shock in predicting the U.S. stock market volatility. The oil shock measures include NPI (net price increase), ANP (asymmetric net prices change), SNP (symmetric net price change), LPI (large price increase), and NPI2 (net price increase) indicators. We select the GARCH-MIDAS model to estimate the volatility. The study provides several notable outcomes. First, in all five oil shocks, symmetric net price change (SNP) information is more useful for forecasting the volatility of the U.S. stock market. Further, we find some evidence for the net price increase (NPI) and asymmetric net price change information (ANP) in some estimation windows. Also, the Covid-19 epidemic provides proof. Our results are robust in the alternative valuation methods, MCS (model confidence set) test, and alternative estimation windows.

Suggested Citation

  • Ghani, Usman & Zhu, Bo & Ghani, Maria & Khan, Nasir & khan, Raja Danish Akbar, 2023. "Role of oil shocks in US stock market volatility: A new insight from GARCH-MIDAS perspective," Resources Policy, Elsevier, vol. 85(PB).
  • Handle: RePEc:eee:jrpoli:v:85:y:2023:i:pb:s030142072300644x
    DOI: 10.1016/j.resourpol.2023.103933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072300644X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Umar, Zaghum & Trabelsi, Nader & Zaremba, Adam, 2021. "Oil shocks and equity markets: The case of GCC and BRICS economies," Energy Economics, Elsevier, vol. 96(C).
    2. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    3. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    4. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    5. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    6. Basher, Syed A. & Sadorsky, Perry, 2006. "Oil price risk and emerging stock markets," Global Finance Journal, Elsevier, vol. 17(2), pages 224-251, December.
    7. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    8. Xu, Weiju & Ma, Feng & Chen, Wang & Zhang, Bing, 2019. "Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States," Energy Economics, Elsevier, vol. 80(C), pages 310-320.
    9. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    10. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    11. Pindyck, Robert S, 1991. "Irreversibility, Uncertainty, and Investment," Journal of Economic Literature, American Economic Association, vol. 29(3), pages 1110-1148, September.
    12. Bastianin, Andrea & Conti, Francesca & Manera, Matteo, 2016. "The impacts of oil price shocks on stock market volatility: Evidence from the G7 countries," Energy Policy, Elsevier, vol. 98(C), pages 160-169.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    15. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    16. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2018. "The impact of oil-market shocks on stock returns in major oil-exporting countries," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 264-280.
    17. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
    18. Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
    19. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    20. Nusair, Salah A., 2016. "The effects of oil price shocks on the economies of the Gulf Co-operation Council countries: Nonlinear analysis," Energy Policy, Elsevier, vol. 91(C), pages 256-267.
    21. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    22. Bouri, Elie, 2015. "Return and volatility linkages between oil prices and the Lebanese stock market in crisis periods," Energy, Elsevier, vol. 89(C), pages 365-371.
    23. Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
    24. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).
    25. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    26. Mork, Knut Anton, 1989. "Oil and Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 740-744, June.
    27. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    28. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    29. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    30. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    31. Jiqian Wang & Yisu Huang & Feng Ma & Julien Chevallier, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Post-Print halshs-04250251, HAL.
    32. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    33. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    34. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maghyereh, Aktham & Ziadat, Salem Adel & Al Rababa'a, Abdel Razzaq A., 2024. "Exploring the dynamic connections between oil price shocks and bond yields in developed nations: A TVP-SVAR-SV approach," Energy, Elsevier, vol. 306(C).
    2. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas & Roubaud, David, 2024. "Extreme co-movements between decomposed oil price shocks and sustainable investments," Energy Economics, Elsevier, vol. 134(C).
    3. Behera, Chinmaya & Rath, Badri Narayan, 2024. "The interconnectedness between crude oil prices and stock returns in G20 countries," Resources Policy, Elsevier, vol. 91(C).
    4. Dutta, Anupam & Park, Donghyun & Uddin, Gazi Salah & Kanjilal, Kakali & Ghosh, Sajal, 2024. "Do dirty and clean energy investments react to infectious disease-induced uncertainty?," Technological Forecasting and Social Change, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Zhu, Bo, 2021. "Oil shocks and stock market volatility: New evidence," Energy Economics, Elsevier, vol. 103(C).
    2. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    3. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    6. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    7. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    8. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    9. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    10. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
    11. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    12. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    13. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    14. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    15. Afees A. Salisu & Rangan Gupta & Oguzhan Cepni & Petre Caraiani, 2024. "Oil shocks and state-level stock market volatility of the United States: a GARCH-MIDAS approach," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1473-1510, November.
    16. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    17. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    18. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    19. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    20. Salisu, Afees A. & Gupta, Rangan, 2021. "Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach," Global Finance Journal, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pb:s030142072300644x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.