IDEAS home Printed from https://ideas.repec.org/a/eee/jpolmo/v38y2016i5p767-784.html
   My bibliography  Save this article

The long-run causal relationship between electricity consumption and real GDP: Evidence from Japan and Germany

Author

Listed:
  • Ikegami, Masako
  • Wang, Zijian

Abstract

We examine the long-run relationships between total electricity consumption (and two electricity types, i.e., combustible fuels electricity and nuclear energy) and real GDP for Japan and Germany, respectively, in a four-variable cointegration framework over 1996Q4–2015Q2. In each country’s case, we find a significant cointegrating relationship between total (and type) electricity consumption and real GDP. We then examine Granger causality between total (and type) electricity consumption and real GDP for each country. In Japan’s case, real GDP is dependent on electricity consumption over 1996Q4–2015Q2. In Germany’s case, electricity consumption follows fluctuations in real GDP. Both countries had an oversupply of nuclear energy in relation to real output over 1996Q4–2011Q1. The oversupply of nuclear energy in Germany has been eliminated following the recent nuclear phase-out. Japan, however, has a revived tendency to hang on to nuclear power.

Suggested Citation

  • Ikegami, Masako & Wang, Zijian, 2016. "The long-run causal relationship between electricity consumption and real GDP: Evidence from Japan and Germany," Journal of Policy Modeling, Elsevier, vol. 38(5), pages 767-784.
  • Handle: RePEc:eee:jpolmo:v:38:y:2016:i:5:p:767-784
    DOI: 10.1016/j.jpolmod.2016.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0161893816300825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jpolmod.2016.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strøm,Steinar (ed.), 1999. "Econometrics and Economic Theory in the 20th Century," Cambridge Books, Cambridge University Press, number 9780521633659.
    2. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Bruns, Stephan B. & Gross, Christian, 2013. "What if energy time series are not independent? Implications for energy-GDP causality analysis," Energy Economics, Elsevier, vol. 40(C), pages 753-759.
    4. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    5. Al-Sadoon, Majid M., 2014. "Geometric and long run aspects of Granger causality," Journal of Econometrics, Elsevier, vol. 178(P3), pages 558-568.
    6. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    9. Chu, Hsiao-Ping & Chang, Tsangyao, 2012. "Nuclear energy consumption, oil consumption and economic growth in G-6 countries: Bootstrap panel causality test," Energy Policy, Elsevier, vol. 48(C), pages 762-769.
    10. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries," Energy Economics, Elsevier, vol. 33(2), pages 236-248, March.
    11. Stern, David I. & Enflo, Kerstin, 2013. "Causality between energy and output in the long-run," Energy Economics, Elsevier, vol. 39(C), pages 135-146.
    12. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
    13. Nazlioglu, Saban & Lebe, Fuat & Kayhan, Selim, 2011. "Nuclear energy consumption and economic growth in OECD countries: Cross-sectionally dependent heterogeneous panel causality analysis," Energy Policy, Elsevier, vol. 39(10), pages 6615-6621, October.
    14. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    15. Wolde-Rufael, Yemane & Menyah, Kojo, 2010. "Nuclear energy consumption and economic growth in nine developed countries," Energy Economics, Elsevier, vol. 32(3), pages 550-556, May.
    16. Hayashi, Masatsugu & Hughes, Larry, 2013. "The policy responses to the Fukushima nuclear accident and their effect on Japanese energy security," Energy Policy, Elsevier, vol. 59(C), pages 86-101.
    17. Payne, James E., 2010. "A survey of the electricity consumption-growth literature," Applied Energy, Elsevier, vol. 87(3), pages 723-731, March.
    18. Strøm,Steinar (ed.), 1999. "Econometrics and Economic Theory in the 20th Century," Cambridge Books, Cambridge University Press, number 9780521633239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, GwanSeon & Choi, Sun-Ki & Seok, Jun Ho, 2020. "Does biomass energy consumption reduce total energy CO2 emissions in the US?," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 953-967.
    2. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    3. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    4. Jun Ho Seok & Soo‐Eun Kim, 2023. "The effect of agricultural trade openness on fruit prices in Korea," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(2), pages 165-179, November.
    5. Wang, Yang & Liu, Yongzhang & Huang, Liqiao & Zhang, Qingyu & Gao, Wei & Sun, Qian & Li, Xi, 2022. "Decomposition the driving force of regional electricity consumption in Japan from 2001 to 2015," Applied Energy, Elsevier, vol. 308(C).
    6. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    7. Opoku, Eric Evans Osei & Acheampong, Alex O., 2023. "Energy justice and economic growth: Does democracy matter?," Journal of Policy Modeling, Elsevier, vol. 45(1), pages 160-186.
    8. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    9. Masako Ikegami & Zijian Wang, 2020. "The suppressive effect of renewables on nuclear energy: implications for OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 247-265, April.
    10. Mohamed Abdouli and Sami Hammami, 2017. "Exploring Links between FDI Inflows, Energy Consumption, and Economic Growth: Further Evidence from MENA Countries," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 42(1), pages 95-117, March.
    11. Zhang, Jinjun & Abbasi, Kashif Raza & Hussain, Khadim & Akram, Sabahat & Alvarado, Rafael & Almulhim, Abdulaziz I., 2022. "Another perspective towards energy consumption factors in Pakistan: Fresh policy insights from novel methodological framework," Energy, Elsevier, vol. 249(C).
    12. Abbasi, Kashif Raza & Shahbaz, Muhammad & Jiao, Zhilun & Tufail, Muhammad, 2021. "How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach," Energy, Elsevier, vol. 221(C).
    13. Brock, Gregory & German-Soto, Vicente, 2017. "Regional industrial informality and efficiency in Mexico, 1990–2013," Journal of Policy Modeling, Elsevier, vol. 39(5), pages 928-941.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    3. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    4. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    5. Paresh Narayan & Russell Smyth, 2014. "Applied Econometrics and a Decade of Energy Economics Research," Monash Economics Working Papers 21-14, Monash University, Department of Economics.
    6. Naser, Hanan, 2015. "Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies," Energy, Elsevier, vol. 89(C), pages 421-434.
    7. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    8. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    9. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain, 2017. "Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States," Energy Economics, Elsevier, vol. 68(C), pages 548-565.
    10. Md. Shahiduzzaman & Khorshed Alam, 2014. "A reassessment of energy and GDP relationship: the case of Australia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 323-344, April.
    11. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain, 2017. "Bounds Testing Approach to Analyzing the Environment Kuznets Curve Hypothesis: The Role of Biomass Energy Consumption in the United States with Structural Breaks," MPRA Paper 81840, University Library of Munich, Germany, revised 07 Oct 2017.
    12. Muhammad Shahbaz & Mete Feridun, 2012. "Electricity consumption and economic growth empirical evidence from Pakistan," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(5), pages 1583-1599, August.
    13. Shahiduzzaman, Md. & Alam, Khorshed, 2014. "The long-run impact of Information and Communication Technology on economic output: The case of Australia," Telecommunications Policy, Elsevier, vol. 38(7), pages 623-633.
    14. Omri, Anis & Ben Mabrouk, Nejah & Sassi-Tmar, Amel, 2015. "Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1012-1022.
    15. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    16. Chor Foon Tang and Eu Chye Tan, 2012. "Electricity Consumption and Economic Growth in Portugal: Evidence from a Multivariate Framework Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Bruns, Stephan B. & Gross, Christian, 2013. "What if energy time series are not independent? Implications for energy-GDP causality analysis," Energy Economics, Elsevier, vol. 40(C), pages 753-759.
    18. Mahalik, Mantu Kumar & Babu, M. Suresh & Loganathan, Nanthakumar & Shahbaz, Muhammad, 2017. "Does financial development intensify energy consumption in Saudi Arabia?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1022-1034.
    19. Shahbaz, Muhammad & Zeshan, Muhammad & Afza, Talat, 2012. "Is energy consumption effective to spur economic growth in Pakistan? New evidence from bounds test to level relationships and Granger causality tests," Economic Modelling, Elsevier, vol. 29(6), pages 2310-2319.
    20. Syed Zwick, Hélène & Syed, Sarfaraz Ali Shah & Liddle, Brantley & Lung, Sidney, 2017. "Disaggregated relationship between economic growth and energy use in OECD countries: Time-series and cross-country evidence," MPRA Paper 93271, University Library of Munich, Germany.

    More about this item

    Keywords

    Bounds test; Fukushima; Granger causality; Nuclear phase-out; Structural break;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • O57 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Comparative Studies of Countries
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jpolmo:v:38:y:2016:i:5:p:767-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505735 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.