IDEAS home Printed from
   My bibliography  Save this article

An enhanced BAM for unbounded or partially bounded CRS additive models


  • Pastor, Jesus T.
  • Aparicio, Juan
  • Alcaraz, Javier
  • Vidal, Fernando
  • Pastor, Diego


The Bounded Adjusted Measure (BAM), initially defined for the additive model, which is a variable returns to scale (VRS) model, was extended to the constant returns to scale (CRS) case [7]. The added range-bounds, which maintain unaltered the production possibility set (PPS) under VRS, showed an influential effect under CRS, reducing the corresponding PPS, as well as a negative effect, excluding some of the original CRS projections. Here we propose an enhanced extension that, by considering a different set of less restrictive bounds, eliminates the negative effect. Moreover, we customize this new extension for the family of partially bounded CRS additive models, i.e., models where at least one variable is naturally bounded from below, if it is an input, or from above, if it is an output.

Suggested Citation

  • Pastor, Jesus T. & Aparicio, Juan & Alcaraz, Javier & Vidal, Fernando & Pastor, Diego, 2015. "An enhanced BAM for unbounded or partially bounded CRS additive models," Omega, Elsevier, vol. 56(C), pages 16-24.
  • Handle: RePEc:eee:jomega:v:56:y:2015:i:c:p:16-24
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jesus Pastor & Juan Aparicio & Juan Monge & Diego Pastor, 2013. "Modeling CRS bounded additive DEA models and characterizing their Pareto-efficient points," Journal of Productivity Analysis, Springer, vol. 40(3), pages 285-292, December.
    2. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    3. Atici, Kazim Baris & Podinovski, Victor V., 2015. "Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture," Omega, Elsevier, vol. 54(C), pages 72-83.
    4. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    5. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    6. Cooper, W.W. & Pastor, Jesus T. & Aparicio, Juan & Borras, Fernando, 2011. "Decomposing profit inefficiency in DEA through the weighted additive model," European Journal of Operational Research, Elsevier, vol. 212(2), pages 411-416, July.
    7. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    8. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    9. Fang, Hsin-Hsiung & Lee, Hsuan-Shih & Hwang, Shiuh-Nan & Chung, Cheng-Chi, 2013. "A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach," Omega, Elsevier, vol. 41(4), pages 731-734.
    10. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    11. William Cooper & Jesús Pastor & Fernando Borras & Juan Aparicio & Diego Pastor, 2011. "BAM: a bounded adjusted measure of efficiency for use with bounded additive models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 85-94, April.
    12. Sungmook Lim & Joe Zhu, 2015. "DEA cross-efficiency evaluation under variable returns to scale," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 476-487, March.
    13. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2019. "Cone extensions of polyhedral production technologies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 736-743.
    2. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    3. Aparicio, Juan & Ortiz, Lidia & Pastor, Jesus T., 2017. "Measuring and decomposing profit inefficiency through the Slacks-Based Measure," European Journal of Operational Research, Elsevier, vol. 260(2), pages 650-654.
    4. Juan Du & Jiazhen Huo & Joe Zhu, 2016. "Data Envelopment Analysis with Output-Bounded Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-17, December.
    5. Jesus T. Pastor & Juan Aparicio & Javier Alcaraz & Fernando Vidal & Diego Pastor, 2018. "Bounded directional distance function models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 985-1004, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:56:y:2015:i:c:p:16-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.