IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v40y2012i5p584-593.html
   My bibliography  Save this article

Passenger and pilot risk minimization in offshore helicopter transportation

Author

Listed:
  • Qian, Fubin
  • Gribkovskaia, Irina
  • Laporte, Gilbert
  • Halskau sr., Øyvind

Abstract

In the offshore petroleum industry, employees are transported to and from the offshore installations by helicopter, which represents a major risk. This paper analyzes how to improve transportation safety by solving the helicopter routing problem with a risk objective expressed in terms of expected number of fatalities. A mathematical model is proposed and a tabu search heuristic is applied to this problem. Three routing policies are considered: a direct routing policy, a Hamiltonian routing policy, and a general routing policy. Extensive computational experiments are conducted on instances derived from real data in order to assess and compare these policies under a travel time, a passenger risk and a combined passenger and pilot risk objective. Several management insights can be derived from this study. In particular, our results show that passenger transportation risk can be reduced by increasing travel time at the expense of pilot risk. This can be achieved through a reduction of the average number of passengers onboard by applying either a Hamiltonian or a general routing policy. Our methodology can also be used to derive an equitable distribution of risk between passengers and pilots, considering that pilots fly much more frequently than passengers.

Suggested Citation

  • Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
  • Handle: RePEc:eee:jomega:v:40:y:2012:i:5:p:584-593
    DOI: 10.1016/j.omega.2011.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831100168X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N., 2004. "A heuristic algorithm for solving hazardous materials distribution problems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 507-519, January.
    2. Giannikos, Ioannis, 1998. "A multiobjective programming model for locating treatment sites and routing hazardous wastes," European Journal of Operational Research, Elsevier, vol. 104(2), pages 333-342, January.
    3. Marvin B. Mandell, 1991. "Modelling Effectiveness-Equity Trade-Offs in Public Service Delivery Systems," Management Science, INFORMS, vol. 37(4), pages 467-482, April.
    4. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    5. Hoff, Arild & Gribkovskaia, Irina & Laporte, Gilbert & Løkketangen, Arne, 2009. "Lasso solution strategies for the vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 192(3), pages 755-766, February.
    6. Galvao, Roberto D. & Guimaraes, Jesu, 1990. "The control of helicopter operations in the Brazilian oil industry: Issues in the design and implementation of a computerized system," European Journal of Operational Research, Elsevier, vol. 49(2), pages 266-270, November.
    7. Gribkovskaia, Irina & Halskau, Oyvind sr. & Laporte, Gilbert & Vlcek, Martin, 2007. "General solutions to the single vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 180(2), pages 568-584, July.
    8. Mingers, John, 2011. "Soft OR comes of age--but not everywhere!," Omega, Elsevier, vol. 39(6), pages 729-741, December.
    9. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    10. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    11. Gerard Sierksma & Gert Tijssen, 1998. "Routing helicopters for crew exchanges on off-shore locations," Annals of Operations Research, Springer, vol. 76(0), pages 261-286, January.
    12. Rakes, Terry R. & Deane, Jason K. & Paul Rees, Loren, 2012. "IT security planning under uncertainty for high-impact events," Omega, Elsevier, vol. 40(1), pages 79-88, January.
    13. repec:eee:reensy:v:91:y:2006:i:7:p:778-791 is not listed on IDEAS
    14. Kaiser, Mark J., 2007. "World offshore energy loss statistics," Energy Policy, Elsevier, vol. 35(6), pages 3496-3525, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
    2. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    3. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    4. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    5. Brachner, Markus & Hvattum, Lars Magnus, 2017. "Combined emergency preparedness and operations for safe personnel transport to offshore locations," Omega, Elsevier, vol. 67(C), pages 31-41.
    6. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:5:p:584-593. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.