IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i2p73-d1669738.html
   My bibliography  Save this article

Tactical Helicopter Transportation Planning for Offshore Personnel on the Norwegian Continental Shelf

Author

Listed:
  • Irina Gribkovskaia

    (Molde University College—Specialized University in Logistics, 6410 Molde, Norway)

  • Gaute Øiestad Slettemark

    (Molde University College—Specialized University in Logistics, 6410 Molde, Norway
    Equinor ASA, 4035 Stavanger, Norway)

Abstract

Background: In offshore energy logistics, contracted helicopters frequently transport personnel to and from offshore installations. Regular and efficient transportation is vital to maintain planned activities at the installations. We focus on tactical helicopter planning from a single heliport for a period of stable weekly transport demands in a heliport operating area on the Norwegian Continental Shelf (NCS). This results in the construction of a repetitive weekly flight program, integrating the selection of helicopter resources optimally matching demand with the generation of a weekly timetable of flights assigning them to start times. The purpose of our research is to develop optimisation-based weekly flight program planning algorithms for energy companies operating on the NCS. Methods: We present a developed two-step solution method sequentially generating possible flights and solving a flight-based integer programming model, and an iterative algorithm based on the decomposition of the flight-based model for the construction of cost-optimal weekly flight programs. Results: The developed algorithms were validated on the real instances from Equinor, the largest NCS energy operator. The decomposition-based algorithm was able to solve to optimality all tested instances, with up to 20 installations served from the heliport within less than 9 min. Conclusions: Equinor logistics planners have tested and verified that the developed flight-based model satisfies the goals and planning policies imposed on the NCS for integrated tactical helicopter planning. Considering the advantages of the decomposition-based algorithm performance in solution quality and speed, energy companies on the NCS find it well-suited as a solution engine in the highly demanded automated decision support tools for tactical helicopter transportation planning.

Suggested Citation

  • Irina Gribkovskaia & Gaute Øiestad Slettemark, 2025. "Tactical Helicopter Transportation Planning for Offshore Personnel on the Norwegian Continental Shelf," Logistics, MDPI, vol. 9(2), pages 1-41, May.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:73-:d:1669738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/2/73/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/2/73/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernanda Menezes & Oscar Porto & Marcelo L. Reis & Lorenza Moreno & Marcus Poggi de Aragão & Eduardo Uchoa & Hernán Abeledo & Nelci Carvalho do Nascimento, 2010. "Optimizing Helicopter Transport of Oil Rig Crews at Petrobras," Interfaces, INFORMS, vol. 40(5), pages 408-416, October.
    2. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    3. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    4. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vieira, Thiago & De La Vega, Jonathan & Tavares, Roberto & Munari, Pedro & Morabito, Reinaldo & Bastos, Yan & Ribas, Paulo César, 2021. "Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    2. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    3. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    4. Gustavo Valério Mendes & Orivalde Soares Silva Júnior & Luiz Antônio Silveira Lopes & Adriano Mourão Oliveira Valério, 2024. "Optimization of Helicopters Flight Hours: Application in Petrobras Campos Basin Operations," Networks and Spatial Economics, Springer, vol. 24(4), pages 847-868, December.
    5. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    6. Brachner, Markus & Hvattum, Lars Magnus, 2017. "Combined emergency preparedness and operations for safe personnel transport to offshore locations," Omega, Elsevier, vol. 67(C), pages 31-41.
    7. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    8. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    9. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    10. Nascimento, Felipe A.C. & Majumdar, Arnab & Ochieng, Washington Y. & Jarvis, Steve R., 2012. "A multistage multinational triangulation approach to hazard identification in night-time offshore helicopter operations," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 142-153.
    11. Halman, Nir & Kellerer, Hans & Strusevich, Vitaly A., 2018. "Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 435-447.
    12. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    13. Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
    14. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    15. Cankaya, Burak & Topuz, Kazim & Delen, Dursun & Glassman, Aaron, 2023. "Evidence-based managerial decision-making with machine learning: The case of Bayesian inference in aviation incidents," Omega, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:73-:d:1669738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.