IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On consistent testing for serial correlation of unknown form in vector time series models

Listed author(s):
  • Duchesne, Pierre
  • Roy, Roch

Multivariate autoregressive models with exogenous variables (VARX) are often used in econometric applications. Many properties of the basic statistics for this class of models rely on the assumption of independent errors. Using results of Hong (Econometrica 64 (1996) 837), we propose a new test statistic for checking the hypothesis of non-correlation or independence in the Gaussian case. The test statistic is obtained by comparing the spectral density of the errors under the null hypothesis of independence with a kernel-based spectral density estimator. The asymptotic distribution of the statistic is derived under the null hypothesis. This test generalizes the portmanteau test of Hosking (J. Amer. Statist. Assoc. 75 (1980) 602). The consistency of the test is established for a general class of static regression models with autocorrelated errors. Its asymptotic slope is derived and the asymptotic relative efficiency within the class of possible kernels is also investigated. Finally, the level and power of the resulting tests are also studied by simulation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 89 (2004)
Issue (Month): 1 (April)
Pages: 148-180

in new window

Handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:148-180
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
  2. Geweke, John, 1981. "The Approximate Slopes of Econometric Tests," Econometrica, Econometric Society, vol. 49(6), pages 1427-1442, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:148-180. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.